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ABSTRACT

The scope of limit equations and their role as starting points to deduce general equations are discussed. Consequently, a general strategy is proposed to go 
systematically from limit equations to general ones. On the basis of this strategy, the most common general equations in chemistry, like the equation of state for 
gases, the chemical potential of gases and the equation for the chemical equilibrium constant are illustrated. The method should help to emphasize students’ need 
to think about the validity range of the equations they are learning and to illustrate the way science infers general equations from specific ones. Furthermore, it 
should allow explaining to students the several steps (introductory, medium and upper level) of their chemistry learning.
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1. INTRODUCTION

General Chemistry textbooks mostly teach equations strictly valid only 
for systems under limiting physical conditions1-3. A rather recently article has 
also called the attention on this fact and on how it limits the analysis of more 
general situations, allowing propagations of misconceptions among students4.

Limiting conditions are normally defined in terms of physical or chemical 
parameters at their limiting values, such as infinitely dilute concentrations, 
infinitely high temperatures or low pressures, etc. Examples of these limit 
equations are the well known concentration-based equations for chemical 
equilibrium constants, Nernst’s equation for electrochemical cells, Raoult’s 
and Henry’s laws for solution vapor pressures, colligative properties of 
solutions, and the widely used ideal gas equation PV = nRT.

Several questions arise regarding limit equations: Why do they appear? 
What part of Nature do they explain? How are situations other than the limiting 
ones explained? These questions are not often discussed in first-year chemistry 
textbooks, but their importance in building students’ understanding of the 
limitations of models and algorithms can not be overstated. Specific answers 
are given in upper level chemistry courses, where concepts like activity and 
activity coefficients are introduced.

The aim of this article is to answer the questions above in a general 
way to better understand the real scope of limit equations and their role in 
deriving equations for real systems under any condition. Consequently, the 
article proposes a general strategy to go systematically from limit equations 
to general ones. This article also aims at illustrating the way science infers 
general equations from specific ones. We believe that this methodology is not 
consciously perceived by students in the long transit from the limit equations 
of general chemistry courses to the general ones learned in their last physical 
chemistry courses. Generally, textbooks do not make this role of science 
explicit to students either, although the value of the limit laws in science has 
been mentioned earlier5

2. METHOLOGY

2.1. A Scientific Route to Understanding
Limit equations are mathematical formulations of laws describing 

the regular behaviors of systems under limiting physical conditions. It has 
been possible to observe these regularities in the laboratory because, as we 
approach these limiting conditions, matter interactions become simpler and 
can be explained using readily observable parameters. Nevertheless, science 
must look for general equations capable of explaining the whole behavior of 
nature. In this regard, limiting physical situations must also be explained by 
these general equations. Then, limit equations must be particular forms of these 
general equations.

One of the ways science seeks the general equations of nature is as 
follows. First, scientists simplify the realities they are trying to understand 
by progressively making the experiment that represents them more and more 
simply until they start observing regularities; they begin to understand those 
realities. Regularities are then expressed as laws and encoded as mathematical 
formulas. The limiting systems are simplified experimental systems. Second, 
these limiting real situations are taken as models (experimental models) to 
image idealized experimental situations, which either eliminate the boundary 
restrictions of limiting real systems or restrict reality to the boundaries where 
it can be understood. Because of that, these systems are considered as ideal 
ones. Thus, limit laws and equations are raised to the category of general laws; 
they are now capable of describing an idealized version of nature in its whole 
range of existence. These ideal systems, and their laws and equations, are then 
submitted to the formalism of general equations and new equations are deduced 
for them. The final step is to modify these fictional general equations to obtain 
real general equations capable of giving account of the complete reality. 
Scheme 1 illustrates this procedure for a particular system.

Scheme 1. The scientific route to understanding. Step I: simplifying the real 
system to obtain equations for some reality we can understand; limit equations 
for a limiting real system. Step II: building-up an ideal system to obtain general 
equations for a fictional (model) system; generalizing the limiting situation. 
Step III: back to reality to obtain general equations for the general real system; 
general ideal equations are modified by functions, Arf, containing all the 
relevant information about the reality ignored by the ideal system. 
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2.2. An Example
Let’s apply above scheme to gases, real gases, the only ones available to 

us. We start by concentrating our attention on gases under limiting physical 
conditions, which we will name limiting real gases, the only ones we understand 
well at this stage. Then, we will first deduce all the equations (or main) for 
these limiting (real) gases; equations that will be valid in reality only under 
limiting physical conditions. From these equations we will then infer all the 
ideal equations by just ruling out from the limiting equations their boundaries 
restrictions. Thus inferred, these equations will cover a hypothetical universe 
because equations that are valid in reality only under limiting conditions will 
now be valid at any conditions. Therefore, they will be equations for an ideal 
universe, ideal gases, and hence (general) ideal equations. We will finally 
infer all real general equations from above ideal equations, where no physical 
restrictions exist, by bringing them to reality. We will do this by introducing 
into these equations all aspects ignored by the ideal equations by mean of 
appropriate functions, that we will name Approximation to Reality Functions, 
Arf . Thus, we will arrive to equation for general real gases. In summary, we 
will deduce all general equations from their corresponding limiting equations 
by using ideal equations as a methodological bridge between them. Table 

1 shows ours results. Following the footnote of Table 1, primed equation 
numbers (’) in the text will refer to equations given in the table. Limit equations 
and parameter tendencies (e.g. P→0, T→∞) in both the table and the text have 
the meaning we discussed in a previous article6.

Usually equations for one step (for one column in Table 1) are not 
necessarily deduced after all equations for the previous step (for the previous 
column) are deduced. Neither the deductions of equations in one row of Table 
1 are necessarily made one after the other. Thus, no matter what each equation 
represents, Eq 5’ is commonly deduced following the route of Eqs 1’- 4’-5’, 
while the deduction for Eq 8’ follows the route of Eqs 1’- 4’-5’-8’; Eq 6’ 
and Eq 9’ are deduced from Eq 5’ and Eq 8’, respectively; and Eqs 2’ and 
3’ are deduced as particular cases of Eqs 8’ and 9’, respectively5, 7-9. We will 
now deduce all equations strictly following the sequence shown in Scheme 
1, the equations for each step corresponding to each column in Table 1 in the 
same sequence. We believe that this strategy should look more logical and 
didactical to students. The need of using a logical sequence in the development 
of Thermodynamic for its better understanding has already been claimed in 
another paper10, though the authors do not make reference to any particular 
sequence.

Table 1. Limit, Ideal and General Equations for Gases.

Limit Real Eqs, Elim General Ideal Eqs, I General Real Eqs, R Approximation-to-reality functions, Arf  

(1’) (PV)lim = (Si ni)RT
P→0, T→∞, any xi

(4’) (PV)ideal = (Si ni)RT 
any T, P and xi

(7’) (PV)real = (PV)ideal x Arf
any T, P and xi

(11’) Arf =[1+A2(T)P+A3(T)P2 +A4(T)
P3+ · · ·]

(2’) mi,lim=mºi (T)+RTln (Pi/Pº)
all Pi→0, T→∞ 

(5’) mi, ideal=mºi (T)+RTln (Pi/Pº)
 any T and Pi

(8’) mi real= mi, ideal + Arf 
any T and Pi = xiP

(12’) Arf = RT ln ci
ci = fi  /Pi

(3’) Klim=PC
cPD

d/PA
aPB

b                
all Pi → 0, T →∞

(6’) Kideal=PC
cPD

d/PA
aPB

b

any T and Pi 
(9’) Kreal =Kideal x Arf
any T and Pi = xiP

(13’) Arf = cC
ccD

d/cA
a cB

b

Elim I = Elim (10’) R = I x Arf, or  R = I +Arf

Equation numbers are primed (’) to distinguish them from those in the text. The first column shows thermodynamics equations for limiting real gases: 
equations for gases at extremely low pressures (P→0) and high temperatures (T→∞). The second column shows equations for ideal gases: same former equations 
but with no restrictions to pressure and temperature values. The third column shows equations for general real gases: same former ideal equations but modified 
by appropriate functions correcting their ideality, Arf, with no restrictions to pressure and temperature values. The fourth column shows some Arf’s functions. The 
meanings of the terms in the last row as well as the deductions of all equations are given in the text.

3. RESULTS AND DISCUSSIONS

3.1. Limiting Real Gases (the reality we can understand: a Fish in the 
Bowl)

We can define a limiting real gas as one existing at limiting physical 
conditions. However, a more precise definition is needed and from a 
thermodynamics point of view.

The Equation of State of Limiting Real Gases. All gases obey the well 
known equation of state at certain temperature and pressure values:  

PV = nRT ,     P → 0, T → ∞            (1)

The agreement between a measured parameter, say pressure, and the 
corresponding one calculated with Eq 1, improves to the extent that pressure 
goes down and temperature goes up. This fact is shown in Eq 1 as P → 0 
and T → ∞. This fact can also be observed from the calculation of R with 
Eq 1 (R=PV/ nT). Thus many gases obey that equation within 0.1 – 1 % at 
temperatures of approximately 25ºC and pressures close to one atmosphere. 
This means that, at temperatures lower than 25°C and pressures higher than 1 
atm results obtained with Eq1 for R differ in a higher percentage relative to the 
accepted value for it6.

Experience also shows that under same above limiting conditions, the 
pressure of a gas mixture is equal to the sum of the pressures that each gas would 
exert if it were alone in the container (Dalton’s Law of Partial Pressures). This 
means that in the mixture each gas exerts the same pressure that it exerts when 
it is alone. From a molecular point of view, this implies that molecular volumes 
are extremely small as compared with the container volume and that molecules 
do no interact with each other so as to be detected by experiments.

Because each gas in the mixture under the limiting temperature and 
pressure conditions above obeys Eq 1, the equation of state for the whole 

mixture is:

(PV)lim = (Si ni)RT = (Sixi)ntotRT,           P→0, T→∞, any xi

The above equation is Eq 1’ at Table 1, xi is the molar fraction of the ith 
component in the mixture, ni is its mole number, ntot is total number of mole, 
and P is total pressure. The pressure due to component i, Pi, relates to the total 
pressure as Pi = xiP. 
The above equation, and any other derived in this paper, applies to pure gases; 
“mixtures of one component”. Therefore, we define a limiting real gas, pure 
or gas mixture, as one obeying Eq 1’. Thus, Eq 1’ is the equation of state 
of limiting real gases, whether pure or gas mixture. The term real will be 
frequently omitted for brevity. Though limiting conditions are indicated for all 
equations in the first column of Table 1, the subscript lim is kept to emphasize 
column comparison. All equations are represented by symbol Elim given at the 
end of this column.

The Chemical Potential of Limiting Real Gases. Let’s assume the solid 
line at Fig. 1 depicts the chemical potential behavior with pressure, of a gas i 
according to some general equation. 

Let´s then find out how that equation would look like at limiting physical 
conditions. For that purpose let’s assume we have a limiting gas mixture
(P → 0 and T → ∞) in a container A and in an identical one, B (same volume), 
only pure gas i. Both containers are at the same temperature and contain the 
same number of moles of component i. According to Dalton’s law the pressure 
of component i is the same in both containers (Pi→ 0). Let’s also assume that 
these containers are separated by a rigid membrane, thermally conductive and 
permeable to gas i only. The thermodynamics condition for phase equilibrium 
requires that mi

A
 = mi

B. For the pure gas we can write:

mi
B

 = mi*(T, Pi) = mi*(T, xiP) = G ,i*(T, xiP)
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Figure 1. The chemical potential behaviour of a gas i. The solid line 
depicts the behaviour of a real gas at any Pi value. The lowest part of the solid 
line describes the behaviour of a limiting gas; it is over straight line I. The 
dotted straight line –line I plus line II- shows the behaviour of a gas having the 
properties of a limiting gas at any Pi value; the behaviour of a hypothetical gas 
(an ideal gas). Arf (the approximation–to-reality function) indicates how much 
the hypothetical (ideal) behavior of the gas must be corrected to match the real 
behavior. mi° (or m*i° in the text) is the chemical potential of a hypothetical 
standard state which occurs when the gas i does not behave as a limiting gas at 
1 atm pressure.  mi° in the inset is the chemical potential of a real standard state 
that occurs when the gas i behaves as a limiting gas at 1 atm pressure.

The asterisk is for pure gas i; Pi is the partial pressure of component i, both 
pure and in the mixture; xi is the mole fraction of i in the mixture; P is total 
pressure of the mixture; and G *i, is the mole Gibbs function of pure gas i. 
Thermodynamics also states that at constant temperature: 

dmi*(T,Pi  ) = d G i*(T,Pi  )  = V i*(T,Pi  ) dPi = RT dlnPi

where V i, is the mole volume of pure gas i. Let’s consider the isothermal 
change of pure gas i between states 1 and 2. The integration of the above 
differential between these states requires that gas i accomplishes Eq 1’ at any 
point in this interval and that it occurs over a straight line of mi* vs lnPi, as 
suggested by the differential equation. State 2 is the state with pressure Pi,2, 
equal to the pressure of i in the mixture, and temperature T. We want state 1 
to be the standard state with pressure Pi,1 = 1 atm and the same temperature. 
While state 2 is a real state of gas (Pi,2 →0), state 1 might be a hypothetical state 
(an ideal state) because the gas might not behave as a limiting real gas at the 
pressure of 1 atm. Let’s consider this possibility. The straight line satisfying all 
these conditions is drawn as a dotted line in Fig. 1; it is formed by lines I and II. 
Because line I matches exactly the lowest part of the solid line, it describes the 
behavior of the limiting gas. State 2 must be one point on this dotted line. Line 
II is an extrapolation of the limiting real gas behavior at pressures higher than 
those at line I. It therefore describes the behavior of a gas having the properties 
of a limiting gas at any pressure value, i.e. the behavior of a hypothetical gas 
(an ideal gas). The standard state is at the intercept of line II with mi –axis, 
where pressure is by definition equal to 1 atm. Hence, this standard state is 
a hypothetical state. Then, the integration of the differential equation above 
gives:

mi*(T, Pi,2  ) - mi*°(T) = RT ln(Pi,2  /1 atm)

The superscript degree indicates the standard state of i at a pressure of 1 
atm. Because the standard state for i necessarily implies pure i, the asterisk 
is redundant in mi*°(T) and can be deleted: mi*°(T) = mi°(T). Subscript 2 is 
also unnecessary and therefore it can be deleted as well: mi*(T, Pi,2) =  mi*(T, 
Pi). Remember that mi*(T, Pi) = mi

B and that mi
B = mi

A
 . Then by naming mi

A as 
mi,lim, we have mi*(T, Pi) = mi,lim. With all these changes and using symbol P° to 
represent the standard pressure of 1 atm, the above equation becomes Eq 2’.

Equation 2’ gives the chemical potential of component i in the limiting 
mixture, mi,lim, when the partial pressure of component i is Pi, and the 
temperature and total pressure of the mixture are T and P, respectively. miº(T) 
is the chemical potential for the standard state of component i, the latter being 
defined as pure gas i at 1 atm and at temperature T of the mixture, having the 
properties it would have at Pi→0. We say that Eq 2’ is the expression for the 
chemical potential of limiting gases, pure or gas mixture.

Two points should be noted. First, as the solid line at Fig. 1 has been 
drawn arbitrarily with that shape, it might be of any other shape and besides 
appears under the dotted line.  Second, if the departure of line II is at a pressure 

higher than one atmosphere, state 2 in above deduction, the standard chemical 
potential  (the chemical potential at 1 atm), mi°(T), will be a point on line I, and, 
therefore, a real (limiting) state, as shown at the inset in Fig. 1. 

In conclusion, Eq 2’ is the equation for the lowest part of solid line in Fig 
1, where it becomes linear. It is the fundamental thermodynamics equation 
of limiting gases; all equations can be derived from it. Because of this, we 
alternatively define limiting gases as those obeying Eq 2’. This equation is 
not deduced in Physical Chemistry textbooks as we have done here (nor its 
representation as in Fig. 1), but, as mentioned earlier, it is derived from a 
general equation.

The Chemical Equilibrium Constant for Limiting Real Gases. All 
thermodynamics equations of limiting gases, pure or gas mixture can be 
derived from Eq 2’. For example, let’s deduce the pressure-based chemical 
equilibrium constant, which is not deduced in textbooks as it is done here. The 
thermodynamics condition for chemical equilibrium requires that Sini mi= 0, 
where mi represents the chemical potentials of each participant in the chemical 
reaction and ni their corresponding stoichiometric coefficients. For an all gas-
phase chemical reaction taking place at limiting pressures and temperatures, 
the application of Eq 2’ to the equilibrium condition yields:

Sinim°i (T) + RTSini ln(Pi/P°)=Sivim°i (T) + RT ln[Πi(Pi/P°)ni] = 0,

Pi represents the partial equilibrium pressure of each participant in the reaction 
mixture. Because Sinim°i (T) is a constant value at fixed temperature, the product 
Πi(Pi/P�)ni in the logarithm must also be a constant value at fixed temperature. 
We name this constant Klim and define it as the chemical equilibrium constant 
for limiting gases. Let’s represent an all gas-phase chemical equilibrium 
reaction as: 

aA  +  bB  ↔  cC  +  dD           (2)

Applying the above result to Eq 2 and omitting (P°)ni for simplicity, Eq 3’ 
is obtained.

3.2. Ideal Gases (generalizing limiting situations: the Fish in the Ideal 
Sea)

To get closer to the description of the complete real system we rule out the 
restrictions to the conclusions of the first part; we let parameters take all possible 
values in nature. However, in doing this we are inventing a fictional system, 
since we are taking our conclusions beyond the range where they are valid in 
reality. From a molecular point of view there are no molecular interactions and 
molecules are point masses in this system. In summary, we build up an ideal 
system of the same size as the real one but having the characteristics of the 
limiting reality. This is illustrated by Step II in Scheme 1. 

Consistently with the idea above, gases in this ideal system accomplish 
all the equations of limiting gases but with no restrictions to their temperature, 
pressure and composition values. They are hypothetical or ideal gases. Their 
main equations are given in the second column in Table 1: Eq 4’ is the equation 
of state of ideal gases, whether pure or gas mixture; Eq 5’ is the expression 
for the chemical potential of ideal gases, pure or gas mixture; and Eq 6’ is 
the chemical equilibrium constant for ideal gases. Thus, ideal equations are 
just extrapolations of their corresponding equations in the first column at any 
P, T, and xi values. This fact is represented by the equation at the end of the 
second column: I = Elim, where I is for the ideal equation and the subscript lim 
is crossed out in the limit equation to indicate that limiting conditions have 
been ruled out.

Regardless of the above, a single equation is needed to define ideal gases 
from a thermodynamics point of view. We propose to choose Eq 5’ because, 
as derived from Eq 2’, it constitutes the fundamental thermodynamics equation 
of ideal gases. Therefore, we define ideal gases, pure or gas mixtures, as those 
obeying Eq 5’. Equation 5’ is the equation for the dotted line in Fig. 1.

So, all equations in the second column in Table 1 are deduced (or imposed 
by definition) from their respective equations in the first column. Thus, we do 
not need to make new mathematical deductions. However, following the same 
reasoning used to deduce Eq 2’ from Eq 1’ and Eq 3’ from Eq 2’, Eq 5’ can 
be deduced from Eq 4’ and Eq 6’ from Eq 5’. This is how textbooks currently 
deduce these equations.

It is necessary to highlight at this point that real gases exhibit ideal 
behavior only at limiting conditions and that, therefore, ideal gases do not exist; 
there is only ideal behavior of real gases. Ideal gases are a scientific invention. 
Consequently, and to avoid confusing students, the term limiting gases is used 
in this work to refer to real gases at limiting pressure and temperature while the 
term ideal gases refers to hypothetical gases behaving as limiting gases at any 
temperature and pressure.
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3.3. General Real Gases (back to reality: the Fish in the Real Sea)
From now on, the terms real and general real will be used as synonyms. 

General systems and equations will refer to systems existing or equations that 
are valid under any physical condition. 

From Fiction to Reality: the Arf Function. All equations in the section 
above are general equations because they cover the idealized reality they have 
been invented for with no restrictions to their applicability. Next, it is necessary 
to see how those general equations are used to explain (or attempt to explain) 
the exact reality as a whole.

The strategy to accomplish the objective above is as follows. First, we 
make the parameters in the right side of the ideal expressions represent their 
values in the real system. Second, we modify these general ideal equations by 
functions that we assume contain all the relevant information about the reality 
ignored by the ideal system. As mentioned, we will name these functions the 
approximation-to-reality functions, Arf This scheme is represented by Step III 
in Scheme 1.

The connection of a real equation, R, to the ideal equation, I, is given by 
one of the following algorithms:

a) R = I x Arf     or   b) R = I +Arf           (3a)                               

Equations 3 are Eqs 10’ in Table 1. Because I = Elim, any real equation relates 
to its corresponding limit equation as follows:

a) R = Elim x Arf  or  b) R = Elim +Arf        (3b)                   

Arf functions are constructed so that real equations can keep the 
mathematical forms of their corresponding ideal equations which, in turn, have 
the form of their corresponding limit equations. The mathematical form of each 
ideal equation will determine the use of either algorithm 3a or 3b. Keeping the 
same mathematical form will allow profiting from all results obtained with 
previous equations and, mainly, making better comparisons among them. 
Besides, the mathematical forms of ideal equations are so simple that it is time-
saving to keep them. While textbooks follow a strategy different to the one of 
this paper, they resort to the same criterion to derive the mathematical form of 
the real equations from the ideal equations. 

According to the above framework, real gases are to accomplish all 
equations of ideal gases but be modified by appropriate Arf functions. Their 
main equations are given in the third column in Table 1; they are modifications 
of their corresponding ideal equations in the second column. The corresponding 
Arf functions are given in the fourth column in Table 1. While some Physical 
Chemistry textbooks make some relationships between ideal equations and 
real equations explicit9, they remain only implicit in most texts 5, 7, 8. Anyway, 
all equations follow the general pattern shown by Eqs 10’ in Table 1, Eqs 3 
above, no matter how each author arrives to them. Nevertheless and by the 
reasons given, textbooks do not explicit this pattern in some general formalism 
(equations) as we have done it here.

Consistently with the above picture, we propose to choose Eq 8’ to define 
real gases from a thermodynamics point of view; as derived from Eq 5’, Eq 
8’ is the fundamental thermodynamics equation of real gases. Therefore, we 
define real gases, pure or gas mixtures, as those obeying Eq 8’.

The way real equations are normally obtained is by replacing the limiting 
experimental parameter in ideal equations by a new one that will correct 
ideality5, 7-9. For example, we replace Pi in Eq 5’ by the parameter known as 
fugacity, fi, which relates to the former by equation ci = fi /Pi, ci being the 
fugacity coefficient. The same procedure is followed for condensed phases, 
where the limiting parameter, xi (mole fraction), is replaced by the parameter 
known as activity, ai, in the respective ideal equation (whose form is the same 
as Eq 5’).  Both parameters are connected by equation g i = ai / xi; gi is known 
as the activity coefficient. Thus, as mentioned before, the current procedure 
also constructs equations having the same mathematical forms as their 
corresponding ideal equations. However, we believe that the approximation-
to-reality function concept introduces the corrections to ideality in a more 
intuitive and systematic way; not as particular solutions for each case.  Finally, 
approximation functions allow introducing first-year students to the concept 
of real equations without discussing concepts like fugacities, activities, and 
others.

Parameters like ci and g i are commonly referred to as measures of the 
deviation from ideality. To our opinion, this concept might confuse students 
because reality is presented as a deviation from ideality. In our context, it seems 
more appropriate to refer to functions Arf as measures of the approximation to 
reality, because that is our purpose when introducing them. 

Thus, the need of correction functions (Arf, g, c, etc) arises from physical 

arguments but their mathematical forms arise from mathematical convenience. 
It is necessary to use Thermodynamics to formulate these functions, and, within 
our framework, this is what we will do in the following sections. However, 
it is a task for experimentalists to evaluate these functions from measurable 
properties and for theorists to search their meanings and formulations from 
the microscopic properties of matter. Much work has been done in this regard.

The Equation of State of Real Gases. Pressure exerted by molecules and 
volume available to them change in going from ideal gases to real ones. From 
a molecular viewpoint, this means that molecular volumes and molecular 
interactions affect these parameters in the extent the system moves away 
from limiting physical conditions and therefore from the boundary conditions 
imposed to ideal gases.  We correct both parameters simultaneously by 
applying algorithm 3a to the ideal equation, Eq 4’. Then the product of real 
volume and pressure is as follows: 

(PV)real = (PV)ideal ·Arf  = (Si ni)RT∙Arf  = (Si xi) ntotRT ·Arf  , any T, P and xi          (4)    

Equation 4 is the explicit form of Eq 7’, where Arf = Arf (T, P, xi). Examples 
of appropriate approximation functions are the virial equations of states. 
Equation 11’ is an example of a virial equation for a pure gas. This equation 
and a similar one that is a function of the molar volume of the gas are given 
elsewhere5, 7, 8. Equation 4 is the equation of state for real gases, whether pure 
or gas mixture, at any temperature, pressure, and composition.

Equation 1’ represents a limiting but real situation. Therefore, under our 
scheme it must be considered as a particular solution of general Eq 4. Hence, 
we must have that: 

                                                     limit Arf = 1
                                                                               Pi → 0, T → ∞

As required, all virial equations satisfy the above equation (see Eq 11’). 
The Chemical Potential of Real Gases. As mentioned above, Eq 8’ is the 

expression for the chemical potential of real gases. It results from applying 
algorithm 3b to Eq 5’. Let’s make this result more explicit:

mi, real = mºi (T) + RT ln(Pi / Pº) + Arf  ,    any T and Pi               (5)

Arf = Arf (T, P, xi). As in Eq 5’, Pi in above equation is the pressure of component 
i in the mixture. However, for the same reasons above, Pi in this equation is not 
necessarily equal to the pressure component i would have if it were alone. Also, 
as in Eq 5’, miº(T) is the chemical potential for the standard state of component i 
in the gas mixture, this state being the pure gas i at 1 atm and temperature T of 
the mixture, behaving as an ideal gas. Therefore, if the real gas does not behave 
ideally at 1 atm, miº(T) is the chemical potential of a fictional state of the gas. 
All corrections to ideality are contained in the reality function, Arf .

Equation 5 is the equation for the solid line in Fig. 1. As mentioned before, 
this solid line could be over or under the dotted line representing the ideal 
behavior of gas i. For the latter case the arrow indicating Arf would point down. 
Since Arf indicates how much the hypothetical (ideal) behavior of the gas must 
be corrected to match the real behavior, we will refer to the arrow up as the 
measure of the positive approximation to reality, or, in opposite sense, as the 
negative deviation from reality; while for the arrow down we will refer to it as 
the measure of the negative approximation to reality, or, in opposite sense, as 
the positive deviation from reality.

Equation 2’ is for limiting real gases. Therefore, it must be a particular 
case of general Eq 5. Hence:

         limit Arf = 0
                                                                               Pi → 0, T → ∞

Under this condition, Eq 5 becomes Eq 2’; Eq 5 is now describing the lowest 
part of the solid line in Fig 1.

The choice of algorithm 3b requires that the reality function be defined as given 
by Eq 12’. As already mentioned, ci is the fugacity coefficient of component i in 
the gas mixture, a dimensionless parameter; and fi is the fugacity of component 
i in the gas mixture, having pressure units.  fi = fi (P, T, xi).  By replacing Eq 
12’ in Eq 5, we obtain: 

mi, real = mºi (T) + RT ln (fi /Pº),    any T and Pi             (6)

As stated before, we have obtained an equation of the same mathematical form 
as the ideal equation (Eq 5’) was obtained; fugacity plays the same role as 
pressure in the ideal equation. Equation 6 is the explicit formulation of the 
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fundamental thermodynamics equation for real gases, expressed by either Eq 
5 or Eq 8’.

Because general Eqs 5 and 6 must give account of the ideal and limiting 
behavior of gases, Eqs 5’ and 2’, respectively, it follows that ci = 1 for ideal and 
limiting gases. Note also, that ci = 1 for the standard state. Fugacity coefficient 
values for other situations can be assessed from measurable gas properties5, 7–9.

The Chemical Equilibrium Constant for Real Gases. Equation 9’ is 
the equation of chemical equilibrium constant for real gases. It arises from 
applying algorithm 3a to Eq 6’. Let´s make this result explicit: 

Kreal =(PC
cPD

d/PA
aPB

b) ·Arf  ,     any T, Pi                       (7)

Equation 3’ is for limiting gases. Therefore, it must be a particular case of 
general Eq 7. This demands that:

                                                             limit Arf = 1                                                             
                                                                                         Pi → 0, T → ∞

The choice of algorithm 3a requires that the reality function be defined as:  

           Arf = Πici
ni = Πi(fi/Pi)ni ,    with ci = fi /Pi ,   any T and Pi = xiP

By definition, ci’s are the same as above. ni represents the stoichiometric 
coefficients of each participant in the chemical reaction. Applying the above 
equation to a reaction as represented by Eq 2, Eq 13’ is obtained. Replacing 
this result in Eq 7 yields:

Kreal = fC
c fD

d / fA
a fB

b ,      any T and Pi                                      (8)

Equation 8 is the explicit form of Eq 9’. As expected, this general equation is 
of the same form as ideal Eq 6’.  Because this general equation must become 
ideal Eq 6’ and limit Eq 3’ at their respective boundary conditions, ci = 1 for 
ideal and limiting gases, as deduced in the above section. 

Equation 8 could have been obtained from Eq 6 following same reasoning 
we used to deduce Eq 3’ from Eq 2’. This is the current way Eq 8 is deduced in 
textbooks. Another alternative is just substituting Pi by fi  in Eq 6’ ; as concluded 
from Eq 6, fugacity in the real equation plays the same role as pressure does in 
the ideal equation. However, we have used the described procedure to follow 
the logics of the presentation.

3.4. The Liquid-Phase Solutions
Liquid-phase system analysis follows exactly the same strategy used for 

gases in this work, showing equivalent results. Two solution models (ideal 
models) can be constructed, one where all solution species are equally treated 
and another where a distinction is made between solutes and solvent. The first 
model corresponds to the ideal solutions and the second model to the ideal 
dilute solutions, as defined elsewhere7-9. As for the ideal gas system, these ideal 
solution systems are generalizations of limiting real solutions. These limiting 
real solutions (simplified experimental systems or experimental models) are 
now “the fish in the bowl”. As for gases the equation of state is the starting limit 
equation, for the first solution system the starting limit equation is Raoult’s law, 
while for the second solution system are Raoult’s and Henry’s laws together. 
For briefness this analysis is not presented here.

The search of general equations without resorting to equations for 
particular cases but to general situations and using general thermodynamics 
formalisms has also aimed some articles. Thus, general equations have been 
developed, whose validity is demonstrated in all cases by applying them to 
limiting situations, for which results are known4, or by arriving to accepted 
equations for ideal systems11. This last situation has also been commented in 
another article10. Because those methodologies require advanced knowledge of 
thermodynamics, they do not allow illustrating to first-year chemistry students 
the various stages of learning of the discipline. By contrast, our methodology 
moves in the reverse direction, allowing us to follow the evolution of an 
equation from its most elementary form (under limiting conditions, a particular 
equation), learned at General Chemistry courses, to its most complex forms 
(under general conditions, a general equation) learned at Physical Chemistry 
courses. In a direction similar to our work, a reasoning scheme and related 
equations have been developed to teach the state function entropy, which start 
with simple and empirically-supported equations to finish with the fundamental 
equations of entropy12. According to the authors, this learning strategy should 
be more intuitive to students and easier to understand than the classical method 
of teaching this concept, which the authors describe as a tortuous chain of 
reasoning. Nevertheless, it is not the purpose of this work correlate limit 

equations with their corresponding general equations nor is intended for the 
teaching of students at introductory chemistry courses, which are, among others, 
the objectives of our work. On another hand, a rubber-elastic material, different 
to solids, liquids and gases commonly used in teaching Thermodynamics, has 
been proposed elsewhere10 to teach the discipline at introductory level. The 
author derives equations for this system by making analogies with ideal gases. 
In this regard, the article does not transit between a limit equation and its 
generalized formulation, as we do, but it remains in one particular situation, 
the ideal situation. In a general sense, science education literature is abundant 
in articles dealing with conceptual and reasoning difficulties that students and 
instructors encounter when learning or teaching chemistry, respectively. They 
refer to specific subjects (a particular compound, reaction or system)13,14 or to 
fundamental concepts at macroscopic and microscopic level, as for instance, 
concepts in thermodynamics6,15,16 and in matter structure17,18, respectively. 
Some articles give specific instructions on how to correct misconceptions or 
how to clarify complex subjects. In two critical cases, one article suggests 
that a substantial review of teaching strategies regarding colligative properties 
is needed19, while another article proposes a new methodology to teach the 
structure of matter17. Only in this last case a holistic overview of a problem, 
as the one presented in this work, is given; authors recommend teaching 
chemistry progressively, and describe a modern way starting with observations 
at a macroscopic level, interpreting these at an atomic and molecular level, and 
then at an electronic and nuclear level.

4. CONCLUSIONS

Limit equations play a crucial role as the starting point for understanding 
reality as a whole; by ruling out their restrictions and making use of appropriate 
functions they become equations of general validity; Scheme 1

Based on above, we have developed an alternative method of presenting 
fundamental chemical thermodynamics equations. Thus, by using the equation 
of state for gases under limiting physical conditions, we have deduced the 
fundamental thermodynamics equations for limiting real gases. Then, by 
ruling out the restrictions for these limit equations, we have obtained equations 
for idealized gases (ideal or hypothetical gases). Finally, by making use of 
appropriate functions we have converted these ideal general equations into 
equations for real gases at any physical conditions (Eqns 3a); real general 
equations. We believe the strategy of developing the equations strictly under 
Scheme I and the consequent routes followed in this work to construct Table 
1, should result more intuitive and logical to students and therefore be more 
didactical than the current one.

Scheme 1 and Table 1 omitting Eq 2’ would allow instructors to tell general 
chemistry students what part of chemistry they are learning at present, not 
going at this stage into the mathematical details of this text but just explaining 
to them the general relationship existing between the limit equations they are 
beginning to learn and the general ones they will learn in future courses. In this 
regard it is necessary to emphasize, that General Chemistry instructors should 
merely present the limiting cases omitting Eq 2 and then warn students that 
more accurate equations will be encountered in future courses. 

Students at introductory physical chemistry courses would know 
that courses they are beginning to attend will teach how to connect, still 
in a general ways, what they have learned previously – the limit equations 
- with what they will learn now and later – ideal equations and general real 
equations-, respectively. And that the latter will be done by discovering the 
functions changing ideal equations into real ones. Besides, they would be 
told about the necessity of theoretical disciplines as quantum chemistry and 
statistical mechanics, to discover the meaning of the terms contained into those 
transforming functions. Finally, students at upper physical chemistry courses 
could examine the paper on their own as a recapitulation exercise. We believe 
that explaining the several steps of their chemistry learning (introductory, 
medium and upper level) to students is something pedagogically meaningful.

Finally, we have introduced terms that we believe should help clarifying 
to students some concepts that might result misleading, such as limiting gases 
to distinguish them from ideal gases; ideal behavior of real gases from being 
ideal gases; approximation to reality instead of deviation from ideality.
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Note
1. A strategy different to the one given by Eq 7’ involves modifying each 

term of the ideal gas equation on the basis of theoretical considerations. A well-
known example is van der Waals equation for pure gases: (P + an2/V2)(V – nb) 
= nRT, where a and b are different constants for different gases and P and V are 
the experimental pressure and volume values.
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