
INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 1, APRIL - 2012 (48-52)

 48

Towards a framework for improving requirement traceability

Hacia el desarrollo de un marco de trabajo para mejorar la

trazabilidad de requisitos

Marco Antonio Toranzo Céspedes 1, Gilberto Cysneiros Filho2, Yessica Gómez3, Oscar Rodríguez Mendoza4

RESUMEN

Muchos trabajos de trazabilidad de requisitos están focalizados en aspectos de programación en vez de la identificación, análisis
y modelamiento de todas las informaciones trazables de un proyecto de software. Este artículo trata del desarrollo de un marco
de trabajo para mejorar la trazabilidad de requisitos de software. El marco de trabajo consiste en la clasificación de las informa-
ciones trazables; la definición y uso de tipos de relaciones entre las informaciones trazables; un conjunto de directrices para
elaborar un modelo de trazabilidad de requisitos en un proyecto de software y el desarrollo de la herramienta MyMT (My Mana-
gement Tool) para apoyar el desarrollo de un modelo de trazabilidad de requisitos. Un sistema universitario de administración de
biblioteca es empleado para ilustrar la aplicación del marco de trabajo.

Palabras clave: trazabilidad, calidad de software, modelo de referencia, marco de trabajo.

ABSTRACT

Work regarding requirement traceability focuses on programming aspects instead of identifying, analysing and modelling all
traceable data in a software project. This paper describes the development of a framework for improving software requirement
traceability. The framework consisted of classifying traced information, defining and using relationship types regarding traced
information, a set of guidelines for developing a requirements traceability model for a software project and using my management
tool (MyMT tool) to support developing a requirement traceability model. A university library management system was used to
illustrate applying the framework.

Keywords: Traceability, software quality, reference model, framework.

Received: June 2nd 2011
Accepted: February 27th 2012

Introduction1 234

Requirements traceability refers to, “the ability to describe and

follow the life of a requirement, in both forwards and backwards

direction (i.e. from its origins, through its development and specifi-

cation, to its subsequent deployment and use, and through all

periods of on-going refinement and iteration in any of these

phases)" (Gotel, 1994). According to Cleland-Huang (Cleland-

Huang, 2003), traceability involves several challenges, such as

1

 Mathematics Pedagogue, Universidad Arturo Prat, Chile. MSc in Computer

Science, Universidade Federal de Pernambuco, Brazil. PhD in Computer Scien-

ce, Universidade Federal de Pernambuco, Brazil. Departamento de Computa-

ción e Informática, Universidad Católica del Maule, Chile. E-mail: mtoran-

zo@ucm.cl

2

 BSc in Computer Science, Universidade Federal Rural de Pernambuco, Brazil.

MSc in Computer Science, Universidade Federal de Pernambuco, Brazil. PhD in

Computing, University of City University, London. Statistics and Informatics

Department, Universidade Federal Rural de Pernambuco, Brazil. E-mail:

g.cysneiros@gmail.com
3

BSc. in Computer Engineering, Universidad de Santiago, Chile. MSc in Informa-

tion Technology, Universidad Técnica Federico Santa María. Departamento de

Computación e Informática, Universidad Católica del Maule, Chile. E-mail:

jgomez@ucm.cl
4

BSc. in Civil Engineer Informatic, Universidad Católica del Maule, Chile. Com-

puter Science Student, Universidad Católica del Maule, Chile. Facultad de

Ingeniería, Universidad Autónoma de Chile. E-mail: orodriguezm@uautonoma.cl

training and certification, support regarding the evolution of rela-

tionships between artefacts, the semantics of traceability relation-

ships and traceability throughout an organisation. Moreover, Gotel

(2008, 2009) has identified other traceability problems and chal-

lenges, such as changing the perception that traceability is a tedi-

ous and repetitive activity, distributing responsibility regarding

traceability amongst several people, planning a strategy to ensure

traceability, continuity and maintenance, determining traceability

reliability levels, traceability by product and identifying traceability

stakeholders and their respective needs. More detailed information

on these and other traceability challenges can be found in Cys-

neiros (Cysneiros, 2011).

This work concerns reference models and meta-models, traceabil-

ity relationship representation, visualising traceability relationships

and requirement management. This paper describes automating

traceability relationship types and applying a set of guidelines for

developing a traceability model using MyMTtool, the successor of

Labrador tool (Toranzo and Mello, 2002). A traceability model

identifies all related artefacts in software development concerned

with requirements. This study was based on experience of apply-

ing software traceability improvement matrix in a financial com-

pany (Villarroel, 2009), Toranzo’s work (Toranzo, 2002) being

adapted by Castro (Castro, 2003), Castor (Castor, 2004) and Pinto

(Pinto, 2005; Pinto, 2007) for tracing agent-orientated systems and

reviewing the literature concerned with requirement traceability

(Cysneiros, 2011).

mailto:orodriguezm@uautonoma.cl

TORANZO, CYSNEIROS, GÓMEZ, RODRÍGUEZ

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 1, APRIL - 2012 (48-52) 49

The framework described in this paper consisted of:

1. Classifying information which may form part of a traceabil-

ity model;

2. A set of relationship types regarding a traceability model

(this paper proposes a set of predefined relationships for a

traceability model);

3. A set of guidelines for developing a traceability model; and

Developing the MyMT tool to support creating a traceability model

and requirement management.

Classifying information

Most research on traceability does not formulate systematic ques-

tions and processes for identifying artefacts, information and

stakeholders (interested in traceability) forming part of a traceabil-

ity model. This paper proposes an approach for addressing how to

classify the traced information to help answer questions such as,

Who are the stakeholders interested in traceability information?

Which artefacts will be traced? How are these artefacts related to?

An organisation having a tool to manage requirements does not

mean that it can identify and manage them. Figure 1 shows four

levels of classification: external, organisational, management and

development. Information levels are not necessarily disjointed.

Classification is based on which organisations are inserted in a

changing political and economic environment which can affect

their information systems.

Figure 1. Classifying traceable information

The external level includes all information related to an organisa-

tion’s external political and economic context which can affect an

organisation’s information systems (for example, tax laws affecting

pay systems and forcing organisations to pay such tax).

The organisational level represents concepts, such as objectives,

strategies and organisational goals, and organisational processes

consisting of several activities conducted by different departments

within an organisation. The combination of items at this level

contributes towards software acquisition and/or development. It is

important for system analysts to know where a process begins and

ends, where an organisation’s needs begin and end to develop

software meeting an organisation’s business needs, and not other-

wise.

In terms of management, with the exception of Ramesh (Ramesh,

2001), most research has not addressed how traceability can be

integrated with project management software. Poor project man-

agement is a major problem in software development (Humphrey,

2010). Software project managers should thus consider that soft-

ware projects plans are based on satisfaction, changing require-

ments (Wiegers, 2003) and paying attention to requirement trace-

ability being done properly because it forms part of the develop-

ment and maintenance involved in producing a quality product.

The current research was paper particularly interested in establish-

ing the relationship between tasks, project management and pro-

ject requirements to help managers improve control and monitor-

ing requirements during different software development stages.

The level of development represents the artefacts produced by a

development team using software development methodology. A

strategy is needed for manual, automatic or semi-automatic trace-

ability (i.e. How are requirements identified within a text? How are

relationships between requirements identified? How are require-

ments related to artefacts?)

Some benefits of such four levels would be:

1. Presenting an alternative way to identify, organise and

analyse the information which may form part of a trace-

ability model;

2. Each level has stakeholders who might be interested in

traceability to verify that their requirements and restric-

tions are satisfied by particular software; and

3. Understanding traceability in developing and maintain-

ing software can contribute towards improving practice.

This is a form of awareness that traceability involves a

problem-solving team and not just a person.

Types of relationship

All relationships were organised into a proposed meta-model

(Toranzo, 2002). All relationships are described below:

• Resource (<REC>) states that source class has physical de-

pendence or information with instances of the target class;

• Satisfaction (<Sat>) specifies that source class instances

depend on something’s satisfaction (or compliance) regarding

target class instances. The term is used to express satisfaction

that something must be done to achieve something (for ex-

ample, meeting organisational goals partly depends on re-

quirements);

• Responsibility (<Resp>) specifies that source class instances

depend on responsibility for target class instances. The term

responsibility is used to express that a person is responsible

for an artefact/element within a project;

• Representation (<Rep>) reflects that a requirement is ex-

pressed (transformed) into another notation regarding another

device, such as a requirement (a text) being expressed in

graphic notation (for example UML) in a diagram;

• Localization (<loc>) states that a requirement has been

assigned to a subsystem; and

• Explanations for aggregation and generalisation relationships

are analogous to the definitions in the literature.

This set of relationships was used to associate different information

as being traceable within a particular software project.

Guidelines for developing a traceability model

This section describes and illustrates a set of guidelines which were

used for developing a requirement traceability model using the

MyMT tool. A library system for managing and integrating biblio-

graphic data from a university’s different campus was used to

present the guidelines. Figure 2 shows the creation of the project

for the library system and Figure 3 shows a screen for creating a

specific task (i.e. analysis) in a project.

External

Organisational

Management

Development

Objectives, rules, processes, ...

 Objectives, tasks, resources ...

Law, rules, ...

 Requirements, diagrams, programmes, ...

TOWARDS A FRAMEWORK FOR IMPROVING REQUIREMENT TRACEABILITY

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 1, APRIL - 2012 (48-52) 50

 Guideline 1: Identifying stakeholders inter-

ested in traceability to ascertain how a system

satisfies organisational activities;

 Guideline 2: Identifying information outside

an organisation which might affect the system.

Some questions to be asked would be: Which

requirements depend on external organisa-

tions? Which requirements depending on sen-

ior management can affect the system? Apply-

ing this guideline to a library system led to cre-

ating the InformationFormat class to reference

information for formatting and cataloguing

books, called machine-readable cataloguing

and Anglo-American cataloguing rules;

 Guideline 3: Identifying the objectives, strate-

gies and business rules to be traced. Some

questions might be: Which organisational ob-

jectives must a system satisfy? Which business

rules are implemented in a system? Where

were the business rules documented / modelled? Which re-

quirements are related to the business rules? Which business

rules affect the requirements? After applying the guideline, the

OrganisationalObjective class was created in the traceability

model for documenting a system’s organisational objectives;

Figure 2: Creating a project

Figure 3: Creating a task

 Guideline 4: Including project management information in

the traceability model. The guideline recommends including

the Task class in the traceability model;

 Guideline 5: Identifying subsystems. Implementing the guide-

line created a subsystem class to represent, for example, user

management and loan administration subsystems;

 Guideline 6: Including the Requirement class. Creating the

Requirement class is mandatory and obvious;

 Guideline 7: Identifying diagrams used to model require-

ments. This guideline identified diagrams used to model re-

quirements and define logical paths. A logical path is the se-

quence of folder names and file name (at the end) where a

diagram is stored;

 Guideline 8: Identifying programmes. This guideline identi-

fied programmes implementing the requirements and logically

defining how to recover them. The explanation of the logical

path is similar to that indicated in Guideline 7. The Pro-

gramme class was created In MyMT; it was related to the Re-

quirement class;

 Guideline 9: Identifying documents. Project documents must

be identified. Figure 4 shows the requirements specification

template available in MyMT;

Figure 4: Requirement specification document

 Guideline 10: Excluding irrelevant classes;

 Guideline 11: Integrating classes having the same meaning;

and

 Guideline 12: Integrating new classes.

Guidelines 1 to 12 were used in developing and identifying candi-

date classes in the traceability model.

Figure 5: Traceability model

TORANZO, CYSNEIROS, GÓMEZ, RODRÍGUEZ

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 1, APRIL - 2012 (48-52) 51

 Guideline 13: Organising classes. The classes forming part of

a traceability model must be organised and structured; and

 Guideline 14: Establishing relationships between classes.

Candidate classes should be related. Several relationships

were identified, for example Requirement into classes: Pro-

gramme, Person and Subsystem. The notations for the types

of relationships are shown on the left-hand side of Figure 5,

while the work area shows the relationships between classes.

MyMT implements the types of relationships: aggregation, gener-

alisation, application, location, satisfaction, performance and

accountability. They were defined in section 3.

 Guideline 15: Defining class attributes. Trace-

ability model classes’ attributes must be defined. Figure 6

defines Requirement class attributes.

The definition should state the field name, data type, field

length, whether it is mandatory or optional, the associated

visual controller (textbox, combobox, for example) and

whether it is a collection of other predefined elements.

Figure 7 presents the data entry for requirements.

 Guideline 16: Defining a matrix for each of the

model’s relationships. The objective was to develop sev-

eral matrices for each relationship in the traceability

model. Figure 8 gives an example of representing the

responsibility relationship (between Person and Require-

ment classes) in a matrix presenting three arguments: the

person’s role, the activity to be performed and the degree

of responsibility for a particular activity.

A row’s intersection with a column represented the rela-

tionship between instances of class origin and destination,

for example Figure 8 indicates that the intersection be-

tween requirement "REQ-102" and Person "PES-2" was

represented by " <test, refine, A> ", this meant that the

person tested PES-2 (first component "test ") to refine

(second component "refine") implementing requirement

REQ-102, and was highly responsible (third component

"A") in this task.

Conclusions

In Cysneiros’ review (Cysneiros, 2011) the researchers

assumed that traceable artifacts were identified and did

not provide guidelines and activities for developing a

traceability model. The work presented in this paper has

been more focused on analysing a traceability methodol-

ogy. Traceability cannot be applied without identifying

the pertinent stakeholders and their respective needs.

Some lessons learned from the study were:

- Levels of information led to identifying potential stake-

holders involved in traceability;

- A traceability model should be agreed amongst team

members and also represent an opportunity to distribute

project tracking according to each member’s role;

- Manual traceability is an arduous and time-consuming

task; and

- The MyMT tool was used to support the case study

library system, represent traceability relationships (Figures

5 and 7) and visualise traceability relationships (Figure 8).

Future work should include implementing automatic

mechanisms such as text identifying requirements and

establishing relationships between the requirements ex-

pressed in text. MyMT continuous development and

Figure 6: Defining requirement class attributes

Figure 7: Creating a requirement

Figure 8: Representation

TOWARDS A FRAMEWORK FOR IMPROVING REQUIREMENT TRACEABILITY

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 1, APRIL - 2012 (48-52) 52

implementation in visual basic, NET and MySQL 5.051b. The

SimplyRequirement system is currently being developed for man-

aging requirements.

 References

Castro, J., Pinto, R., Castor, A., J Mylopoulos., Requirements
traceability in agent oriented software engineering, lecture notes
in computer science, LNCS 2603, V. 2603, 2003, Springer-
Verlag. pp. 57-72.

Castor, A., Rastreamento de requisitos no proceso de desenvolvi-
mento de software orientado a agentes, MSc thesis, Universidade
Federal de Pernambuco, Recife, 2004.

Cleland-Huang, J., Chang, C., Christensen, M., Event-based
traceability for managing evolutionary change, IEEE Transactions
on Software Engineering, 2003, N- 9 : Vol. 29, pp. 796-810.

Cysneiros, G., Software Traceability for multi-agent system imple-
mented using BDI architecture, DPhil thesis, City University Lon-
don, London, 2011.

Cysneiros, G., Zisman, A., Traceability and completeness checking
for agent-oriented systems, 23rd Annual ACM Symposium on Ap-
plied Computing - Technical Track on Agent-Oriented Program-
ming, Systems, Languages, and Applications, 2008.

Gotel, O., Finkelstein A., An analysis of the requirements traceabil-
ity problem. International Conference on Requirements Engineer-
ing. - Colorado, USA, IEEE Computer Society, 1994, pp. 94-
101.

Gotel, O., Traceability – Problems in a Word. The Newsletter of the
Requirements Engineering Specialist Group of the British Com-
puter Society, RQ49, 2008.

Gotel, O., Traceability – Putting the ‘y’ First. Requirements Quar-
terly: The Newsletter of the Requirements Engineering, Specialist
Group of the British Computer Society, RQ50, 2009.

Humphrey, W., Thomas, W., Reflections on management: how to.

 manage your software projects, your teams, yours boss, and
yourself. Addison Wesley, 2010

Pinto, R., Castro, J., Toranzo, M., Requirements Traceability, in
International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems, 2002, Orlando.
http://www.teccomm.les.inf.puc-rio.br/selmas2002/. Last con-
sulted: 15/10/2010.

Pinto, R., Castro, J., Tedesco, P., Silva M., Alencar F., A Traceabil-
ity Reference Model for Agent Oriented Development. Proceed-
ings of the Third Workshop on Software Engineering for Agent-
oriented Systems. João Pessoa. pp. 27-38. Paraíba/UFPB, 2007.

Pinto, R., Silva, C., Lima, T., Castro, J., Support for requirement
traceability: The Tropos case, XIX Simpósio Brasileiro de Engen-
haria de Software - SBES'05, 2005, Uberlândia, Anais do XIX
Simpósio Brasileiro de Engenharia de Software - SBES'05. 2005.
pp. 40-55.

Ramesh, B., Jarke, M., Towards reference models for requirements
traceability, IEEE Transactions on Software Engenieering, Vol. 27,
Jan, 2001. pp. 58-93.

Toranzo, M., A Framework para melhorar o rastreamento de requi-
sitos. PhD thesis, Universidade Federal de Pernambuco, Brasil,
2002.

Toranzo, M., Mellon, E., Uma proposta para melhorar o rastrea-
mento de requisitos. Workshop de Engenharia de Requisitos..
Valencia, Spain. 2002. pp. 194 -209

Toranzo, M., Mejorando la trazabilidad de requisitos. 8th Workshop
Iberoamericano de Ingeniería de Requisitos y Ambientes de
Software 2005.. Valparaíso, Chile, 2005. pp. 28-42

Villarroel, R., Gómez, Y., Gajardo, R., Rodriguez, O. Implementa-
tion of an improvement cycle using the Competisoft methodologi-
cal framework and the Tutelkan platform. In Proceedings of
SCCC'2009. pp.97-104.

Wiegers, K., Software Requirements, Microsoft Press, 2nd edition,
2003

