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In five dimensions, we consider a model described by the Einstein gravity with a source given by a scalar
field and various Abelian gauge fields with dilatoniclike couplings. For this model, we are able to construct
two dyonic black holes whose three-dimensional horizons are modeled by two nontrivial homogeneous
Thurston’s geometries. The dyonic solutions are of Lifshitz type with an arbitrary value of the dynamical
exponent. In fact, the first gauge field ensures the anisotropy asymptotic while the remaining Abelian fields
sustain the electric and magnetic charges. Using the Hamiltonian formalism, the mass, the electric, and
magnetic charges are explicitly computed. Interestingly enough, the dyonic solutions behave like Chern-
Simons vortices in the sense that their electric and magnetic charges turn to be proportional. The extension
with an hyperscaling violating factor is also scrutinized where we notice that for specific values of the

violating factor, purely magnetic solutions are possible.
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I. INTRODUCTION

During the last decade, some promising efforts have been
made to extend the standard adS/CFT correspondence to
new areas of physics, and more particularly to physical
systems enjoying an anisotropy symmetry. By anisotropy,
we mean that the space and the time are allowed to scale
with different weights. In this optics, the pioneer works
were done in the context of physical models invariant under
the Galilean-Schrodinger symmetry [1,2], see also [3] for a
geometric approach. Soon after, it was realized that similar
holographic considerations can also be translated to the
case of scale invariant Lifshitz fixed point systems without
Galilean invariance. In this case, the gravity dual metric is
commonly known as the Lifshitz spacetime [4] and its
representative metric in arbitrary D dimension can be
parametrized as

D2
ds? = —r¥ds? +d_r2+ rZZd)c2 (1)
r? v
izl

In order to avoid as well as possible cumbersome formulas,
we have chosen to take the adS radius / = 1. It is simple to
see that the anisotropic transformations defined by
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t — AL, X; = Ax;, (2)

r——r,
A

are part of the isometry of the Lifshitz metric. Here the
constant z which reflects the anisotropy is called the
dynamical exponent. In analogy with the adS case, black
holes with a Lifshitz asymptotic (1), the so-called Lifshitz
black holes, would also have a certain interest for holo-
graphic considerations. This interest has grew up during the
last time as shown by the important literature on the subject,
see, e.g., [5—18]. From these different examples it is clear
that, in contrast with the adS isotropic case, the Einstein-
Hilbert action with eventually a cosmological constant is not
enough to sustain the Lifshitz metric. In fact, in standard
gravity, Lifshitz black holes can only exist provided the
introduction of some extra matter fields [7-9] while higher-
order gravity theories with or without matter source may also
source the Lifshitz spacetimes, see, e.g., [6,11,12].

Before proceeding, we would like first to enlarge the
notion of Lifshitz black holes. In its standard form, the
(D — 2)-dimensional base manifold of the Lifshitz metric
(1) is an Euclidean flat space. This restriction on the
manifold ensures that the isometry group of the standard
Lifshitz metric (1) contains in addition to the anisotropic
transformations (2), the spacetime translations x; — x; + ¢;
and t — 1 + 1 as well as the spatial rotation X — Rx with
R € SO(D —2). The algebra of the corresponding gener-
ators or equivalently of the Killing vector fields form the
so-called Lifshitz algebra. Nevertheless, there also exist
black hole solutions with a nonflat base manifold, see, e.g.,
[19-23], whose asymptotic resembles the Lifshitz one but
with a different base manifold
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drr 222
ds? = —r22de + —+ Zl gij(x, r)dx;dx;.  (3)
i.j=

For such a metric of course, the isometry group will
explicitly depend on the form of the transverse metric g;;.
Note that the isometry group of metric-like (3) may not
contain the anisotropic dilatations as it occurs for a spherical
or hyperboloid transverse metric, [20,24]. There also exam-
ples of black hole solutions whose asymptotic forms match
with (3) with more than one anisotropic direction [19,23]. In
these cases, the standard dilatation transformations (2) are
generalized to

t— A%, et x; = A%x;, (4)
where the coordinates x; for which a; # 1 represent the
additional anisotropic directions. We find then appropriate
to extend the terminology of Lifshitz black holes to black
hole spacetime whose asymptotic metric mimics (3) and
which is invariant at least under the general dilatation
transformations (4). In other words, we only demand that
the isometry group contains at least the dilatation generator
associated to (4) as well as the generator of time translation.
There is a certain interest in extending the notion of Lifshitz
black holes as we have done. Indeed, Lifshitz black holes as
defined by (3)—(4) have been shown to exit in the case of
standard general relativity for dimensions greater than five
[19,25]. The restriction on the dimension, namely D > 5,
results from the fact that the horizon’s topologies of these
generalized Lifshitz solutions are modeled by some of the
Thurston’s geometries [26] which can only be defined for
dimensions greater than three. In fact, as conjectured by
Thurston and later on proved by Perelman, any compact
orientable three-dimensional Riemannian manifold can be
modeled by one of the eight Thurston’s geometries1 which
are the Euclidean space [, the three-sphere S?, the hyper-
bolic space H?, the products S' x S? and S' x H?. In
addition, there exist three other possible geometries which
are neither of constant curvature nor of product of constant
manifolds, called the Nil geometry, the Solv geometry and
the geometry of the universal cover of SL, (R). These exotic
geometries have the following representative metrics

- 1 1
Solv: d5* = x3dx{ + — dxj + — dx3, (5a)
; 2 2
Nll d§2 = dx% + dx% —|— (dx3 — x]dX2)2, (Sb)
~ 1 dxs)\ 2
X1 X

'In fact, these eight three-dimensional Thurston’s geometries
can be extended in dimensions D > 3.

which can be schematically written as

3
d? =Y}, (6)
I=1

where the w; are the corresponding left-invariant one-forms
with I = {1, 2,3}. For latter convenience, in what follows,
we will use the notation I = (i, 3) where i ranges from 1 to 2.

In order to be self-contained, we report the generalized
Lifshitz black holes solutions of standard five-dimensional
general relativity, i.e., G,, + Ag,, = 0 found in [19] and
having horizon’s topologies described by the three-
dimensional Solv and Nil geometries. In fact, these
solutions can be represented as follows

ar
A ar*iw?,  (7)
T

ds* = —r¥=f(r)df* + 20
=

where the a;’s are constants that allow the introduction of
an eventual additional scale. In the case of the Solv black
hole solution, the set of parameters reads

M
Solv: f(r) =1-—,

2
{Z_l’qi_I’Q3_O’ai_17a3_§}’ (8)

while for black hole solution with Nil’s horizon topology,
the parameters are given by

M
Nil: =1-—-:,
1 f(r) Ai/2
11
Z:3/2»61i=17%:27“1':1,613:7- )

It is clear that both solutions satisfy asymptotically
the requirements given in (3)-(4). More precisely, the
Solv’s solution (7)—(8) is asymptotically invariant under
a one-parametric Lifshitz generalized transformations (4)
defined by

t— A, roon x; = A%,

X, = Aoy, X3 = A%x3, (10)
while for the Nil’s solution (7)—(9), one has two anisotropic
directions

1

t— M, =0 Xp—>Axp,  x3 - A (1)

In the present work, we propose to find the dyonic
version of the Solv (7)—(8) and of the Nil’s solution (7)—(9).
The interests for such study are multiple. First of all,
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charged Lifshitz black holes are known to have rather
unconventional thermodynamical properties whose range is
largely spread from solutions with a Reissner-Nordstrom-
like behavior [24] to zero-mass charged solutions [7]
including extremal solutions [27]. The richness of these
properties is essentially due to the difficulty of “charging”
the known Lifshitz solutions. This is in contrast with the
adS situation where an important class of charged adS
black hole solutions arise simply from the neutral configu-
rations turning on the Maxwell action. The situation is
radically different for the Lifshitz black holes where all the
known electrically charged Lifshitz black holes solutions of
Einstein gravity require, in addition to the Maxwell
potential, some extra fields materialized by scalar field
with a dilatonic coupling [24] or a massive Proca field
[7,17] or by considering nonminimal coupling [28]. In
other words, the Maxwell field alone is incompatible with
the Lifshitz asymptotic for the Einstein-Maxwell model.
Nevertheless, this problem can be circumvented in higher
dimensions D >4 where quadratic corrections of the
Einstein gravity can accommodate Maxwell charged
Lifshitz black holes [12]. The lesson learned from these
examples is that the presence of extra parameters in the
action permits to soften the incompatibility between the
Maxwell potential and the Lifshitz asymptotic. We would
like to explore the relevance of this observation in order to
achieve our task of charging the Solv and the Nil’s
solutions. More specifically, we will consider a model
described by the Einstein gravity with a negative cosmo-
logical constant together with a scalar field and various (at
least 3) U(1) gauge fields with dilatoniclike couplings.
Indeed, dilatonic sources are usually good laboratories for
investigating charged black holes, see, e.g., [29-31]. As
shown below, the presence of more than one U(1) gauge
field is mandatory in order to ensure the Lifshitz asymptotic
as well as the presence of the electric and magnetic charges.
In fact, the first gauge field guarantees the Lifshitz
asymptotic while the remaining Abelian fields sustain
the electric and magnetic charges.” We will also see that
the dyonic extensions of the of the Solv (7)—(8) and of the
Nil’s solution (7)—(9) with a multidilatonic source present
some interesting features. For example, the introduction of
the dilatonic source will extend the range of the dynamical
exponent. Indeed, while the vacuum Solv’s (resp. Nil’s)
dyonic solution requires z = 1 (resp. z = %), their dyonic
extensions will exist for a Lifshitz dynamical exponent
z>1 (resp. z > %). Also, the dyonic solutions presented
below are quite different from those existing in the current
literature in the sense that their electric and magnetic
charges are proportional. This in turn implies that there
does not exist a purely electric or magnetic limit as it is the

*Note that for the purely electrically Lifshitz charged black
holes with planar, spherical, or hyperboloid horizon topology
[24], two dilatonic fields were at least required.

case for the four-dimensional dyonic Reissner-Nordstrom
solution.

The plan of the paper is organized as follows. In the next
section, we will explicitly present the five-dimensional
model, its field equations as well as the ansatz we will
consider. In Secs. III and IV, we will display the dyonic
extensions of the Solv (7)—(8) and of the Nil’s solution
(7)—(9). A detailed analysis of their thermodynamic features
will be provided showing that their electric and magnetic
charges are in fact proportional. In each case, we will check
that the electromagnetic version of the first law of thermo-
dynamics is satisfied. In Sec. V, we will extend these results to
the so-called hyperscaling violating case with Solv and Nil’s
horizon topologies. In this case, the Lagrangian model
involves a Liouville potential but without the cosmological
constant. Interestingly enough, for precise values of the
hyperscaling violation factor the electric contribution can
be canceled yielding to purely magnetically charged con-
figurations. Finally, the last section is dedicated to our
conclusions.

II. ACTION, FIELD EQUATIONS, AND ANSATZ
WITH THURSTON GEOMETRIES

As anticipated in the introduction, the five-dimensional
action we consider is given by the standard Einstein-Hilbert
action with a cosmological constant together with N U(1)
gauge fields with dilatoniclike couplings,

R-2A 1 1 )
S= / de\/——g[ 5 —28”(1)8"45—4Ze’1f‘/’F(i)WF’('i)],
i=1

(12)

where as shown below N = 3 in the case of the Solv’s
solution and N = 4 for the dyonic Nil’s solution.

The equations of motions obtained by varying the action
with respect to the metric, the gauge vector fields, and the
scalar field respectively read

G+ Agy =Ty, (13a)
V,,(eﬂf‘f’F’(‘i”)) =0, (13b)
N 2.
O¢p = Z <Zl i F(i)gpFE’{;), (13c)
i=1

where the energy-momentum tensor 7, is defined as
1 c
T;w = vﬂ¢vb¢ - Eg;tuva¢v ¢

N
iP o 1 iP 0,
+) (eﬂr/ FioaF i =5 G er? FWF(;;> . (14)
i=1

024020-3



MOISES BRAVO-GAETE and MOKHTAR HASSAINE

PHYS. REV. D 97, 024020 (2018)

In this paper, we will consider an ansatz for the metric of

the form (7), and in order for the metric ansatz (7) to be

asymptotically Lifshitz in the sense of (3)—(4), we will

require that lim,_ o f(r) =1 and the left-invariant one-

forms w; scale homogenously as w; - A% ®; under the
1

dilatation transformations ¢t — A°f and r — ar

III. ELECTROMAGNETIC CHARGED SOLUTION
WITH A SOLV’S HORIZON TOPOLOGY

We first report a charged dyonic black hole solution of
the field equations (13) for which the line element has a
Solv’s horizon topology parameterized as follows

dr?

ds®> = —r¥f(r)dt* + 270 + r2x3dx?
dx3 2\ dx}
+r2 224 < ) 3,
X3 z2+2) x3
r z+2 r 2742
fr)=1- m<7h) + (m - 1)<7h) . (15)

The matter fields associated to this spacetime metric read
et = V2, Foy, =

rh z+1

Foy = /z(m - 1)<—) ;

=/z(m = 1)r, 71, (16)

and the solution exists provided that the coupling constants
are chosen as

(z+2)(z=1)r<th,

F(3)X1X2

B _(2—1—2)2 . 4
A= 2 A= 2(z— 1)’
b =+2z-1), A3 =—v2(z-1). (17)

Before providing a complete thermodynamics analysis of
the Solv’s dyonic solution, some additional comments are
needed. First, the existence of the Solv’s solution is ensured
for at least three Abelian gauge fields with dilatoniclike
couplings. Second, we find judicious to parametrize the
metric solution as in (15) which makes clear that r;, stands
for the location of the event horizon. Nevertheless, as
shown below, the two integration constants m and r;, will be
identified with the mass, the electric and magnetic charges.
In addition, the metric function appearing in (15) will have
a Reissner-Nordstrom-like form. It will also become clear
after the thermodynamics analysis that the electric and
magnetic charges are proportional which in turn explains
the mismatch between the number of integration constants
and of charges. The range of the Lifshitz dynamical
exponent is given by z > 1. In fact, even if the coupling
constant A; as defined in (17) blows up in the limit z = 1,

the first dilaton Lagrangian in the action e1¢F ), F’(‘l”) -0

as z — 1. More precisely, the limiting adS case z =1
reduces to the dyonic solution recently found in [32] in
the absence of the scalar field or to the vacuum solution for
m =1 (7)—(8), see Ref. [19]. Hence, interestingly enough,
the fact of turning on the dilatonic source permits to
extend the range of the dynamical exponent to be z > 1.
Consequently, the asymptotic metric is invariant under the
following one-parametric Lifshitz generalized dilatation
transformations (4) extending those of the vacuum sector
(10) and defined by

t— A%t, r—or x; = A%,

x, = Aoy, X3 = A%x5.

Also, the scalar field is defined up to a constant ¢, and this
constant can be put to zero without any loss of generality
since it is a symmetry of the dilaton action represented as

¢ —¢—cand A; — eiIT{A(,-). Finally, we would like to
point out an interesting fact concerning the electro-mag-
netic duality. In the hyperplane defined by x; = cst, the
electric and magnetic fields are dual in the sense that

*F(Z) =F<3), (18)

where the Hodge dual operator * is defined for the four-
dimensional metric defined by x; = cst.

We now turn to the thermodynamics study of the Solv’s
charged dyonic solution (15)—(17). As was shown in [33],
the partition function for a thermodynamics ensemble may
be identified with the Euclidean path integral in the saddle
point approximation around the Euclidean continuation of
the solution. In the present case, we will deal with a reduced
action principle with a static Euclidean metric endowed by
a Solv’s horizon topology. More precisely, the Euclidean
ansatz for this mini superspace configuration is given by the
following line element

ds* = N*(r)F(r)ds® + _dr2 +22d + 22
F(r) S x3
2\ dx3
_ s 19
* <Z + 2) x% (19)
with matter fields given as
A(l-)ﬂdx :A([)T(}")dT,
A)ddt = Ay, (X2)dx; + Ag)y, (%)) dxy, ¢ =¢(r),
with i = 1, 2. In the Euclidean continuation, the range of

the radial coordinate is from the horizon r;, to infinity and
the Euclidean time 7 =it is compactified as 7 € [0, j
where /3 stands for the inverse of the temperature f# = 77!,
As usual, using this ansatz, a reduced action can be written
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in a “Hamilton form.” Nevertheless, because of the pres-
ence of the magnetic field F 3y, we will carefully derive this

Hamilton form in various steps.
The Euclidean action denoted / for the previous ansatz
is schematically decomposed in five pieces as

2
Ig =TIy + g+ > Ip, +1p, + B (20)
i=1

The first two terms correspond to the Einstein-Hilbert piece

and the kinetic term of the scalar field, the 7 F(f)’s are the
electric dilatonic parts of the action while /r , stands for the

magnetic part(s) and B is a boundary term fixed in such a
way that the reduced action I has a well-defined extremum,

p
IEH - |QS01v|
I

that is 0l = 0. As shown below, the Euclidean action
on-shell reduces to the boundary term and is related to the
Gibbs free energy G as

IE:ﬂg:ﬂ(M_q)eQe_q)QO)_S’ (21)

where M is the mass, S the entropy, ®, (resp. ®,)
corresponds to the electric (resp. magnetic) potential and
Q, (resp. Q,,) represents the electric (resp. magnetic)
charge. Note that we opt for the formalism of the grand
canonical ensemble where the temperature as well the
electric and magnetic potentials are fixed.

For the dyonic Solv’s solution, we found that the different
pieces of the reduced Euclidean action are given by

V2AP? + r?z + 2rF(r) + 2r* + 2F(r)]dr,

/} o0
Lin = |QS<>1V|§ “_—2 . N(r)[PPF(r)(¢(r)')]dr
r z+2
Fo :ﬁ/[A(,-)ﬁ,P(,-)(r,xi,xQ + 2(2)x3\/Te_’l"‘/’P(,-)(r,xi,xﬁz dx,dxydxsdr,
/}H e4P(0y A, — 00, A)y, ) dx dxydxsdr.
z+2) r? x3 2 !

In these expressions, we have defined |Qg,,| to be
the volume element of the compact Solv’s spacetime (5a),
that is

dx
|Qs01y| = / dxldxz—% = |Q ||, ]1n |Qs],
Q) x€)H %y X3

(22)

where the Q,’s for I = 1, 2, 3 stand for the compact ranges
of the horizon coordinates x;. On the other hand, the P;)’s
are the conjugate momenta of the electric potential fields
A(; for i = 1, 2. We can note that the last two integrals / Fiy

and / Fay still involve the four-dimensional volume element;

this is due to the fact that the electric conjugate momentum
and the magnetic gauge field are allowed to depend on the
horizon coordinates x; and x3. Nevertheless, this depend-
ence can be specified through the field equations associated
to the Euclidean action. Indeed, the variation of I with
respect to the conjugate momenta P(; implies that the

conjugate momenta are separable in the following way

P
Py = 2 ) it
X3
- 2 ehif
P(l)(}") — }"2 j?arA(i)T’ f0r l == 1,2 (23)

|
On the other hand, the variation with respect to the
magnetic gauge field A3 forces the magnetic gauge field
to be lineal in x;. Hence, under these last considerations, the
reduced action /; can be written in a Hamilton form as

- 2
Ig :ﬂ|QSolv|/ <NH+ZA(Z‘)T
"n i=1

H =

7_7’(i)>dr + By,

2
: {Arz + r2<1 +§> +F 4 rF 4 ()

2 ")
z+2 = es
" Z( 42 )e WPl 5 (F <3>x,x2>2} (24)

i=1

It is reassuring to check that the field equations obtained by
varying the reduced action I; (24) with respect to
N,F,¢, 73(i)7A(i) and Az are consistent with the original
equations of motion (13).

Now, we are in position to determine the boundary term
B, that will encode all the thermodynamics features of the
solution. This term is fixed by requiring that the total action
has an extremum 6/ = 0 with

024020-5
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2 0
6l = flQsoy| [\/ N (SF + PFQS¢) + ZA 5P } +6lp, + 0B

T

The variation of the magnetic part 5/, must be done with care,

5IF —ﬂ\/ 1H|Q';|/dr

Solv‘\/ V _1 r

where €'/ is the totally antisymmetric tensor with e'? = 1.
Note that in the second line, we have used the fact that A3 is
linear in x; (16), and this also explains the reason for which
the volume element of the Solv’s geometry (22) appears.
This variation of the magnetic piece is analogous to what
occurs in the magnetically charged Reissner-Nordstrom
solution or to what have been done recently in the case of
adS, dyonic black holes [34]. For the Solv’s solution (15)—
(17) with metric functions N and F identified as

r=cf2) o ()]

a straightforward computation permits to obtain the varia-
tion of the boundary term

where, as usual, in order to avoid conical singularity, we
require that N6F|, = — 47” ory,. We also identify the electric

potential @, as the difference of the gauge field between the
infinity and the event radius, i.e.,

m—1

®, = Ap)(00) = Ap)e(ry) = T,

Z

and hence the second piece in 6Bp is identified with the
electric variation —®,69Q,. Analogously, the last variation in
O0Bg must correspond to the magnetic variation —®,,69,,,,
see (21). Nevertheless, contrary to the electric part, there is
a priori no way of identifying the magnetic potential, and
hence the magnetic potential and charge can only be
determined up to two constants, namely

U a A A 3)xj|Qj|]

Xx;€Q;

o0 N A3
z+1 / 1) z+l>/ dr 16"2 ,

h

o, =Avm—1r,,
2

z+ 1

m = Bv |QSOIV|FZ+17

AB =

We can note from now that independently of the fact that the
constants A and B are not fixed, it is clear that the electric and
magnetic charge are proportional (see below for the electric
charge). However, since the electric and magnetic variations
are equal —®,6Q, = —®,,69,,, and because of the electro-
magnetic duality in the hyperplane defined by x; = cst (18),
one can suppose that ®, = ®,, and Q, = Q,,. Finally, in the
formalism of the grand canonical ensemble the boundary
term can be expressed as

2
B = P2l [y
2z(m—1)
—(® [0 z+1
( e T m)( 742 T ):|

/[ 2
-2z m|QSolv|r]21'

Since the on-shell Euclidean action reduces to the boundary

term /g = Bp, thedifferent thermodynamics quantities

can easily be determined through (21) yielding to
(2z4+2—-mz)r;,

Q z+2 —
= | 501v|\/ mrh ) dn
§= 2ﬂ|QSOIV| \/ ®, =

Z

(_1)z+1
12 i

Q - Q - |QSolv| (25)
It is straightforward to check the validity of the first law of
thermodynamics

dM =TdS + ®,dQ, + ®,,d9,,. (26)
Just to conclude this section, we note that the metric solution
(15) can now be rewritten in the Reissner-Nordstrom-like
form as
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dr?
ds®> =—r*f(r)df> + + r2x2dx?
( ) rzf(r) 3 1
2 2 2
UL S L}
X3 Z+2) x3
+2 M (z+2) Q2+Q2

flr)=1-

2 |Qgo |7 o2 27)

4Z|§2501v|2 r2(z+l) ‘
From this last expression, one observes that in the adS limit
z = 1, even if the fall off of the mass term is more faster than
in the standard five-dimensional Reissner-Nordstrom case,
one still gets a finite and nonzero value of the mass for the
Solv’s dyonic solution.

IV.PURELY LIFSHITZ DYONIC SOLUTION WITH
A NIL’S HORIZON TOPOLOGY

We now present the dyonic extension of the Nil’s
solution (7)—(9). In this case, it is possible to find the
following class of solution with a line element that reads

d 2
ds> = —r¥f(r)dt* + r2fr(r) + r2dx? + r’dx3
+ (Z + 4)r4(d.X3 - X]d)Cz)z,
z+4 2z+4
f(r):]—m(r—:) +(m—1)<%) . (28)

The gauge and scalar fields associated to this line element
are given by

22z-3)(z + 4)

e = pV/202:73), Fiyn = 5 73,
V2z(m = 1)r?
Fon="—"1r—""
F(S)x1x2 =X Z(m_ 1)(Z+4)r2+2,
F<3)X1X3 = Z(m - 1)(Z + 4)r§1+2’
F(4)x2x3 = Z(m - 1)(Z + 4) VZ+2, (29)
and the parameters must be chosen as
4 3 8
R CE R S
2 2(2z-3)
2(z—-2 2(z—1
gy =222 P Chul)

V2022 -3) V2(2z-3)

Few comments can be made concerning this dyonic
solution with Nil’s horizon. First, the Nil dyonic solution
requires at least four U(1) gauge fields with dilatonic
couplings and is valid for a dynamical exponent z > % As
before, the limiting case z = 3 with m = 1 (that is without
electromagnetic charges) reduces to the vacuum Nil’s

solution (7)—(9). Second, the solution does not exhibit a
such electromagnetic duality (18) as was for the Solv’s
solution. In addition, the dyonic Nil’s solution can be
likened to a Lifshitz black hole whose asymptotic sym-
metries contain a generalized dilatation transformation with
two anisotropic direction (4) given by

t — A%t, r— zr, x; = Ax;, X3 — 12x3.

Finally, as in the previous case, the two integration
constants will be shown to represent the mass and the
electric/magnetic charges.

Let us now study the thermodynamics properties of the
Nil’s solution. Following the same lines as those presented
in details for the Solv’s solution, we consider the following
Euclidean ansatz

d 2
ds* = N*(r)F(r)ds® + ar + r2dx? + r?dx3
F(r)
+ (2 +4)r*(dxs — x1dxy)?,

A(i)ﬂdx” = A(i>,(r)dr, A(g)ﬂdx” = A(3)[(xj)dx1,

Ay dxt = Ay (xy)dx", ¢ = ¢(r).

For this class of ansatz, the Euclidean action (20) is

decomposed as

Igy = [Quulfvz +4

x /°° N(r) [WF + ot <i FA+ 1> + 2r3F’] dr,

r

oo = 9l 5[5 [N FO @0 Pl

Ip, = ‘QNHW/ |:A(i)rar7_3(i) + 6_/1""575(20} dr,

N
"z +4

and the magnetic pieces read

b —
IF(3.4) = D) z+4 Neh? F%3)x|x2 + 2x1F(3)X1sz(3)X1X3

Ty (. —— )
r2 (Z + 4) 1 (3)x1x3

2

Nett L@ Ly g0
+ Ne m X1dx,dxsar.

In these expressions, we have defined |Qy;| to be the
volume element of the Nil geometry (5)

Km—/ dxydxyd; = )19 (30)
Q) x€Q)H x Q3

The dependence of the magnetic field strengths F(3) and
F4) on the Thurston’s coordinates x; can be fixed by
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varying the total action (20) with respect to A3); and Ay);.
In doing so, one obtains that

1

Famn = =5 Fomn =08t Flgpr = cst

Using this last result, the x;-dependence of the magnetic
action [ Fau is canceled out, and hence the reduced

Euclidean action (20) can be written in Hamilton form
depending only on the radial coordinate as

© 2 —
IE = ﬂ'QNil| / (NH + ZA(,)TPEZer + BE?
T'n i=1

where the Hamiltonian reads

4
—Vit4 [WF 4 (§+ At 1) +2P°F +%F(¢’)2

2 e—/l,'lﬁ 'ﬁZ 6/13(]5 5
+ l:Z] (Z +4)r4 (l) + 2r2(z +4) (3)XIX3
+ A F2 )
2r? (z + 4) (4)x2x3

As explained before, the boundary term encodes all the
thermodynamical features of the solution. The boundary is
fixed by requiring that the on-shell Euclidean action has a
well-defined extremum 6/, = 0 with

AN |:\/Z + 4N (2r36F + r*F¢/5¢p)

2 o0
+ 2%157’@}
i=1

Tn

+6lp,, + OB,

where 6lf  , stands for the variation of the magnetic

34
dilaton parts of the action

ﬁ Ne}”}()b ii
" :\/H_Ll_ dr r2 0(]3) [61A<3>15A
ﬁ Ne/144) ii
] dr 2 ‘7@ [3iA(4),;5A<4)j|QlHQj”x,-eQ,»

olp, 312121 g,

+

where the nonvanishing components of aéé) and o’({o are

given by ag) = —6?31) =1 and a%j) = —0?3) =1.
After some computations, for the Nil’s solution with
metric functions and conjugate momenta given by

N(r) =r=t,

z+4 2z+4
- en(e) e (2]
S Vet
P(Z) - N(r) € arA(i)T7

one obtains for the variation of the boundary term
o8 = ol [VE+ (s - L)

i)

2o/ T = DG+ a7 ).

—®,6(\/22(z + 4)(m —

SN

/2(m—1
where the electric potential is given by ®, #r%

Finally, the boundary term in the formahsm of the grand
canonical ensemble is expressed as

B = BlQnil 2V + 4mrit -

—27[VZ+ |QNi1|'

However, in this case, we can not use a duality argument in
order to properly fix the magnetic potential. Hence, the
magnetic potential and charge will only be defined up to
two constants A and B, and the thermodynamics quantities
read off from (21) are given by

(I)e Qe - (I)m Qm]

M = 2(Qu V7 T dmri, T:(Zz—mz+4)r,§
1 ’

4z
2(m—1
S =27|Quq|Vz + 4r‘}l, o, = wri,
z
Q, = |Qlv2z(z+4)(m — 1) i
@, =AVm— 17, Q,, = |Qa|BVm —1r;*2,

AB =27 + 4. (31)

Nevertheless, in spite of the “arbitrariness” concerning the
magnetic potential and charge, the first law of thermody-
namics only requires the product of the constants A and B,
and it is a matter of check to see that the first law (26)

effectively holds, and just need that AB = 2+/z7 + 4.

V.DYONIC SOLUTIONS WITH A HYPERSCALING
VIOLATION FACTOR

One of the main interest in extending the adS/CFT
correspondence to other areas of the physics was precisely
to have a better understanding of strongly coupled systems
of the condensed matter physics. In condensed matter
physics, the notion of quantum phase transition is of great
importance and it occurs at some critical point where the
system may display a hyperscaling violation reflected by
the fact that the entropy does not scale with its spatial
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dimensionality. From the gravity side, such hyperscaling
violating systems can be described by the so-called hyper-
scaling violating metrics [35] which are conformally
related to the Lifshitz metric as

—r%=dp? +— — Z dx,} . (32)

ds? =

rDz

in such a way that the anisotropic transformations (2) act
now as a conformal transformation, i.e., ds® — p5ds?.
Here the parameter 0 is the so-called the hyperscaling
violation factor responsible of the violation of the hyper-
scaling property. Of course, hyperscaling violation black
holes refer to black hole solutions whose asymptotic forms
match with the metric (32), see, e.g., [36—39]. As before, this
notion of hyperscaling violation black holes can be enlarged
by relaxing the fact that the topology of the horizon is flat but
still requiring that the generalized dilatation transformations
(4) act as a conformal transformation for the metric solution
in the asymptotic region. In this context, a hyperscaling
violation black hole of general relativity was found in [23]
where the horizon topology is modeled by the Nil’s

geometry and where the dynamical exponents are z :%

and 0 = %. As done previously, we will see that this vacuum
solution can be electromagnetically charged by turning on a
dilatonic source. For this purpose, we consider a slightly
different action than (12)

R
S = / dx\/=g {— -
where the potential is

U(¢)

The equations of motions read

0%~ U(9)

WF"”] (33)

= Ae'®. (34)

G;w = T/,w - g;wU(d))’

) =0,

(35a)

v, (cht P (35b)

(i)

dU
¢ = Z(’M’, ‘<”;>+d¢, (35¢)

where the energy-momentum tensor 7', is given by (14). In
what follows, we will present two dyonic solutions of the
field equations (35) with Solv and Nil’s horizon topologies.

A. Hyperscaling violation dyonic Solv’s solution

We first report a solution of the field equations (35)
where the event horizon is given by the Solv’s geometry
(5a). The metric element and fields are given by

1 1
ds* = Z [—rzzf(r)dt2 2 )dr + r2x3dx?

L dx2+ 2 dx3
P22 = |23
x3 z+2-0 %

70 =1=m() " - ()T

Fay = \/(Z +2-0)(z—=1)r#t19,

Foyn =/ G=0)(1 = 0)(m— 1)( )

r

F(3)xle = (Z - 9) (m — l)rhzﬂ—e,
et =r 2(z—1)-4(3z- 9) (36)

provided that the coupling are tied as follows

(z+2-6) 20
A== 2 ’ y*\/ls(z—l)—39(3z—9)’
B 4(3-0)
L /18(z—1)-30032-0)
1= 2(3z-3-9)
P /18(z=-1)-30(3z-0)
e 23:-3-20)
P /18- 1)-30(3z-0)

It is interesting to note that in this limiting case 6 — 0, the
constant y goes to zero and hence the potential term (34)
becomes a cosmological constant term. Consequently, in
the absence of the hyperscaling violation factor 8 = 0, the
solution reduces to the dyonic solution found previously,
see Sec. IIL.

As before, in order to provide a complete thermody-
namics analysis of the Solv’s solution with hyperscaling
violation, we opt for the Hamiltonian formalism where the
reduced action (24) becomes

- 2
IE:ﬁ|9501v|/ (NH+ZA(i)T
"h i=1

2 (L., -6\ 1 0> —30
- (14229 42 F(
T z+2—9[r ( T >+r9 < T3 )

2 0
+rF( 1- 0 +—F(¢’)
2 2

7_721.)> dr+Bg,

- st
(z4+2-6) _, - o
+21: T Pyt aalF (3)X|X2)2:|’ (37)

1

and where the conjugate momenta are given by
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The variation of the boundary term yields

2 0 2 2z-0)(1-60)(m—1
5BE:ﬁ|9501v|{,/—z+2_9[5<<1 Z)mr;” 9)-%&%—9}—@5(\/ (Z 2&2_);’" )r;jl—”)

2(m—1) -
2 o= T 9)},

with

(1-6)(m- 1)r
e (2_9) h

After some computations, we finally conclude that the
thermodynamical quantities are

2 0
=0 1=2= z+2—6
M= sy 5 =15 mri .
T:[(m—Z)Q—z(m—Z)—{—Z]rz
47 ’
2
S =2x|Q — 20
71’| Solv| Z+2— Hh
(1—9)( - 1)
b, = /—————r,
e 9) I'p
O)(im—1)
Q z+1-6
Qe | SOlVl\/ Z+2 ) rh ’
D, =AvVm—1ry,,
/ 2
= |Q BvVm—1 z+1—07 AB — -
Qm | Solv| m rh Z+2—9

(38)

and we check again the validity of the first law (26).

To end this section, we would like to point out an
interesting observation. For the Solv’s solution without
hyperscaling violation parameter, we have shown that the
charged solution must necessarily be electric and mag-
netic. Here, the presence of the hyperscaling factor
allows to switch off the electric contribution putting
60 =1, and the resulting configuration turns to be purely
magnetic.

B. Hyperscaling violation black hole
with a Nil’s geometry

We now turn to the construction of the dyonic extension
of the vacuum Nil’s solution [23] which is given by

1
ds* = —; [—rzzf(r)dt2 +
73

1
270 dr* + rdx?

+r2dx3 + (z+ 4 — 0)r*(dxs — xldxz)z} ,

1) s ()

et — r 2(2z—3)—%’(3z—9),
2(2z -3 4—-0
Fyn = \/ (22 Sz + )rz+3_67
2
V2 -0)(z=-0)(m—-1)r;>"
Fayn = ,m_e ’

3)xjx; xl\/ Z -
Fips = V(z- 9)(m

F(4)X2X3 = \/(Z - 9) (m -

-1)(z+4-0)r;>"
)(Z+4 (9) z+2— 9
(z+4-0)r;™7, (39)

provided that

(z4+4-0)(z+3-0)

A=-— ; ,
o 4(6 - 0)
L /18(22-3)-30(32-0)

B 2(3z-6-10)
2 /18(22-3) - 303z -0)
o 2(:-20-3)
P /18(22-3) - 303z - 0)

and the Liouville coupling potential (34) is given by

26
V18(2z-3)-30(3z-6)

}/:

In the limiting case, z =3/2, 8 =9/2 and m = 1, one
effectively recovers the vacuum solution found in [23].
Also, note that for a hyperscaling violation factor @ = 2, the
solution can be rendered purely magnetic. Now, proceeding
as before, one obtains the following thermodynamical
quantities
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0
M - |QNilm<2 — 5) mr§1+4_g’
[(m - 2)9 —+ Z<2 — m) + 4]7’2
4z ’
S = 2”|QNi1|\/mr2_("’
o, = [E=0m=1) 5
z—0
Q, = |QN11\\/(Z +4-0)2-0)(m—1)(z -
q)m = AM?‘}%,
Q, = |Qu|BVm — 15527,

9) r2+2—9’

AB=2Vz+4-0,
(40)

which satisfy the electromagnetic version of the first law of
thermodynamics (26).

VI. CONCLUSIONS

Here, we have shown that the vacuum solutions with
Solv and Nil’s horizon topologies of the five-dimensional
Einstein equations can be electromagnetically charged
through a dilatonic source with at least three Abelian gauge
fields. The resulting dyonic solutions are asymptotically
anisotropic and can be considered as Lifshitz black holes in
the sense as defined by Egs. (3)-(4). The presence of
various Abelian fields is mandatory in order to ensure the
Lifshitz asymptotic and the emergence of the electric and
magnetic charges. Through an Hamiltonian approach, we
have realized a complete analysis of the thermodynamics
features of the dyonic solutions, and we have checked that
for each solution, the electromagnetic version of the first
law of thermodynamics is satisfied. We have noticed that
the dyonic solutions, in spite of having a Reissner-
Nordstrom-like metric, are quite different from the mag-
netically charged Reissner-Nordstrom solution. Indeed, for
the dyonic Lifshitz solutions with Thurston’s horizon

topologies, the electric and magnetic charges turn to be
proportional. In other words, there does not exist a purely
electric or purely magnetic solution. This characteristic is
similar to what occur for the odd-dimensional Chern-
Simons vortices (see [40] for a good review). Indeed,
because of the presence of the three-dimensional Chern-
Simons term xe**?A,F,, in the action, the magnetically
charged vortices also carry an electric charge proportional
to the magnetic charge. It is important to stress again that
the presence of the dyonic charges allows the Lifshitz
dynamical exponent to be free and not restricted as in the
vacuum case. Such a feature was already observed in [17]
where the presence of a nonlinear electrodynamics source
was responsible of the freedom of the dynamical exponent.

The hyperscaling violation extensions of these dyonic
solutions were also considered. In this case, the dilatonic
source is augmented by a Liouville potential term and
the cosmological constant is turned off. We have noticed
that for some specific values of the hyperscaling violation
factor, the dyonic solutions can be rendered purely
magnetic.

An interesting work to be done will consist in computing
for the dyonic solutions reported here the DC conductivities
of the corresponding field theory in order to gain some
precision about this latter, see, e.g., [32]. Also, very
recently, a new dyonic solution of the Einstein-Maxwell-
dilaton theory was constructed in [41] using some solution-
generating technique. It will be interesting to see wether
these techniques can be exported in our problem to generate
news dyonic solutions.
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