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Abstract: A large part of the global brick manufacturing industry has evolved based on knowledge
transmitted from generation to generation without developing a consistent scientific approach.
The purpose of this article is to contribute to this approach by discussing the state-of-the-art and
future trends of the design and construction of artisan brick kilns (ABK). The methodology proposed
for this study is based on a systematic literature review whereby main question is: What research
exists on brick kilns? Based on the results of this review, it is recommended that appropriate emerging
technologies that should be incorporated to ABKs for either medium or small enterprises should
be: mechanical fans, envelope thermal insulation, organic waste of uniform size as fuel, automatic
control of process variables and computer simulations of phenomenological processes. This should
be accompanied by technical training for the brick-makers and greater access to financing funds.
The technologies reviewed throughout the paper will allow for a more thermally efficient design of
kilns, which will emit less hazardous greenhouse gases and atmospheric pollutants.

Keywords: artisan brick kiln; brick kiln emissions; energy efficiency; clean combustion;
sustainable energy

1. Introduction

In recent years, improvements in living standards, sustained technological development and
increased demand for new infrastructure have led to significant growth in the consumption of
construction materials. The construction industry uses raw materials by weight more than any other
industrial sector [1]. About 50% of all materials extracted from the Earth’s crust are processed into
construction materials [2]. The building materials are classified as: structural clay products (bricks),
rock and stones, wood and wood products, concrete, aggregates, water, lime, pozzolans, building
mortars, ferrous and non-ferrous metals, ceramic materials, polymeric materials, paints, enamels,
varnishes, tar, bitumen, asphalt, gypsum, adhesives, heat-insulating materials and sound-insulating
materials. One of the oldest building materials, brick, continues to be one of the most popular
and leading construction materials because it is cheap, durable and easy to handle and work with.
Clay bricks are used for building up exterior and interior walls, partitions, piers, footings and other
load-bearing structures [3].

The brick industry is the oldest industry in the history of mankind; it can be said that it is the only
manmade material that has defied time even though it was invented 5000 years ago [4]. Asia produces

Sustainability 2020, 12, 7724; doi:10.3390/su12187724 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-2486-5872
https://orcid.org/0000-0003-3857-4934
https://orcid.org/0000-0002-8075-910X
http://www.mdpi.com/2071-1050/12/18/7724?type=check_update&version=1
http://dx.doi.org/10.3390/su12187724
http://www.mdpi.com/journal/sustainability


Sustainability 2020, 12, 7724 2 of 19

1300 billion bricks annually, making it the world’s largest producer of bricks. China, India, Pakistan
and Vietnam account for 67%, 13%, 3% and 1.7% of the world’s brick production, respectively [5].
The Indian brick sector consumes more than 24 Mton of coal annually along with huge quantity of
biomass fuels [6]. On the other hand, Swisscontact [7] reports that: (1) in Latin America there are
approximately 41,000 brick producers, with a high heterogeneity of production levels, technology
and profitability, among the countries and within the same countries; (2) the countries with low
technological levels are Ecuador, Argentine, Mexico, Chile and Central American countries, which is
also reflected in the low levels of kiln capacities, while Brazil (technological leader in Latin America)
and Colombia have production areas with technology ranging from semi-mechanized brick kilns (BKs)
to fully automated production units and high efficiency kilns; (3) Peru and Bolivia have a mix of
business clusters, where some of these have implemented certain technologies and others have all
their production based on manual processes (local traditions); (4) it is estimated that in Peru, Bolivia,
Brazil and Mexico there are 2500, 3000, 7000 and 17,000 brick kilns, respectively; and (5) about 40%–50%
of Latin America’s brick production comes from artisanal brick kiln (ABK), e.g., using open kilns
(old rural building), low efficiency and high emissions without any control. These ABKs are small
production units, highly dispersed and difficult to oversee. The artisanal firing process varies according
to geographical location and material available in the manufacturing area, and it is a process that is
based on tradition and folklore more than on a basis justified by studies or scientific analysis.

The conventional brick kilns are not energy efficient and the emissions from the brickfields are
severely contaminating the environment [8]. The artisan brick production sector needs exploratory
research at a global level, such as that set out in this manuscript, as most of the research of ABKs are
case studies, although there are some coincidences in the process shortcomings. Swisscontact [7] has
identified the most relevant problems of the Latin American artisanal brick industry: (1) scarce or no
regulation and/or lack of enforcing laws (emissions, land use planning, product quality, occupational
health, child labor, etc.), (2) lack of clarity and security in land use planning, (3) invisibility of the sector
for the public sector, (4) lack of knowledge of the impact on health and climate, as well as the costs
related to these impacts, (5) limited access to financing, (6) lack of information on the availability and
profitability of low-emission technology, (7) scarce options for the transitional move from “artisanal”
to “mechanized,” (8) need to develop studies for reference scenarios of the brick sector, both on the
financial and emissions levels involving current and expected expectations and technologies, (9) lack
of sector capacities in business management and productivity, (10) high informality, (11) bureaucratic
difficulties in obtaining licenses and (12) the lack of involvement from the construction sector for the
demand of more sustainable products.

The information presented in this manuscript allows to visualize the problems of the brick
industry. In addition, this research is to provide a systematic review of recently published scientific
work about ABKs. A critical analysis is reported about types of BKs, fuels used, emissions of polluting
gases, negative effects of pollutants, phenomenological studies about firing process and future trends
for ABKs.

2. Methods

This article is based on an informational systematic review. This methodology is a rigorous
review, which was originally developed mainly within medical research and first outlined for the
field of organization and management studies by Tranfield [9]. Systematic reviews exhibit significant
advantages compared to traditional narrative approaches of literature reviews. Said reviews generally
do not follow a formal methodology, thus resulting in a lack of transparency and replicability by
others [10]. The principal search question was: What research exists on brick kilns?

A large proportion of information about ABK is available in manuals and technical reports.
Therefore, this technical information complements the information not found in scientific articles.

This review paper attempted to review the published papers in various application areas related
to BK. Therefore, this paper aimed to identify the papers related to BK in various parts of the published
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papers such as keywords, title, research method, results, conclusions and discussions. In relation
to the classification scheme, a reference repository has been established, which included papers in
international scholar journals from 2013 to 2019. The target databases for this paper were “Scopus” and
“Web of Science” as the two important databases which cover the extensive range of journal scopes.
The articles were categorized based on the application areas, publication year, journal name, study
purpose and type of study (utilized, proposed, integrated, modified or extended types). This present
article, first, classified articles into five fields (kilns types, emissions, fuels, energy efficiency and
phenomenology); secondly, analyzed the study type; and third, reviewed articles based on research
purpose and goal.

3. State of the Art of Brick Kilns

Figure 1 shows the search done in the Web of Science (WoS) and Scopus platforms, using the topic
“brick kiln.” The number of articles indexed in Scopus are greater than in WoS. The total number of
items in this time-period was 582 and 1452 for WoS and Scopus, respectively. This research analyzed
the period between 2013 and 2019, which represents 53% and 34% of the articles found in WoS and
Scopus, respectively.
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Figure 1. Graph of the number of scientific articles indexed in Web of Science (WoS) and Scopus for the
topic “brick kiln” (1975 to 2019).

Using the exact topic “brick kiln” between 2013–2019, 98 and 233 documents in WoS and Scopus
were found, respectively. These articles are divided into various topics: emissions (36%), pollutant
(26%), efficiency (13%), biomass (13%) and design (12%). Figure 2 shows that the main authors
researching “brick kiln” have affiliations in Pakistan and United States. The main authors focused
their research on pollution caused by brick making. e.g., Kamal et al. [11] evaluated the health risks of
BK workers to dust-bound polycyclic aromatic hydrocarbons (PAHs) exposure in Punjab province
(Pakistan). This study also emphasized the need for pollution control in the BK industry of Pakistan.
Kamal et al. [12] evaluated the atmospheric concentration levels and ambient exposure of PAHs in
Gujranwala, Lahore and Rawalpindi districts of the Punjab Province (Pakistan). Results also showed
that ~88% of the atmospheric PAHs could be attributed to the wood combustions, out of which more
than 50% of wood combustion were possible with the BK sector.
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Figure 2. Graph of the main authors (WoS + Scopus) with the exact topic “brick kiln” (2013–2019).

Figure 3 shows that the first BK patent was in 1890 and the important BK research milestones were
achieved from 1975 to 2019. Currently, the impact of the BK industry on the environment and human
health is being evaluated, together with the trend towards making bricks with more energy-efficient
processes. This leads to lower pollutant emissions, improved fuel quality and reduced fuel consumption.
In this context, the systematic review allowed to divide the state of the art of artisan brick kilns into (1)
types of furnaces, (2) emissions, (3) fuels, (4) energy efficiency and (5) phenomenology.
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Figure 3. Diagram of important milestones in the history of the brick kiln (BK) [8,13–24].

3.1. Brick Kiln Types

Figure 4 shows some BK types according to their operation mode and flow type. Several authors
classify BKs into intermittent and continuous [5,15,25]. In intermittent kilns, bricks are fired and
cooled in batches. The kiln must be emptied and refilled, and a new fire has to be started for each
batch of bricks. Most of the heat contained in the hot flue gases, fired bricks and the kiln structure is
thus lost. Intermittent kilns are widely used in several countries of Asia, Africa and Latin America.
Intermittent kilns can be further subdivided into without chimney (open kiln) and with chimney
(i.e., down-draft and climbing kiln). In a continuous kiln, the fire is always burning and bricks are being
warmed, fired and cooled simultaneously in different parts of the kiln. Fired bricks are continuously
removed and green bricks are continuously added. Consequently, the rate of output is almost constant.
Heat in the flue gas is used to heat and dry green bricks, and the heat in the fired bricks is used to
preheat air for combustion. Due to the incorporation of heat recovery features, continuous kilns are
more energy-efficient than intermittent kilns [25]. Continuous kilns can be further subdivided into
moving fire kilns and moving ware kilns. On the other hand, there are at least ten processes associated
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with the operation type of the BK: (a) open kiln (e.g., campaign, “caiera,” volcano), (b) dormant fire,
(c) open kiln with fixed walls (e.g., scotch, arab, fixed wall with fixed combustion chamber, with armed
chamber for each burn, squares and caipira (Brazil)), (d) simple downdraft, (e) Marquez kiln (MK),
(f) dome (e.g., beehive), (g) Hoffman, (h) Bull’s Trench, (i) cedan, (j) multi-chamber, (k) zig-zag,
(l) mobile-modular, (m) vertical continuous and (n) tunnel (Figure 5).
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Table 1 shows indicators of the brick manufacturing process according to BK type. The quality of
the brick depends on BK type, i.e., the kilns: open, dormant fire and open with fixed walls have <40%
of top quality pieces, while the kilns: Hoffman, multi-chamber, cedan, mobile, vertical continuous
and tunnel have over 80% of top quality pieces [7,26–28]. The tunnel kiln is the BK with the highest
level of investment (>US $200,000), but at the same time, it allows for greater production capacity
(200,000 brick/week), greater energy efficiency (<2 MJ/kg), more than 80% of high quality parts and
lower particulate emissions (<250 mg/Nm3) [7].
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Figure 5. Drawings of the intermittent and continuous ovens. The arrows indicate the flow of brick
loads and gas flow. (a) Open kiln without fixed walls (rectangular), (b) open kiln with fixed walls,
(c) open kiln without fixed walls (cylindrical), (d) down-draught, (e) MK, (f) dome, (g) Hoffman,
(h) Bull’s Trench, (i) Cedan, (j) multi-chambers, (k) zigzag, (l) mobile-modular, (m) vertical shaft and
(n) tunnel.
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Table 1. Summary of typical ranges of environmental, economic and production parameters for BKs. Information compiled by the authors.

Kiln Type

Investment
Level

Production
Capacity

Energy
Consumption

Thermal
Efficiency PM Emissions CO2

Emissions
e.g., Country

(Miles US $) (Miles/Batch) (MJ/kg of
Product) (%) (mg/Nm3)

(g/kg of
Fired Brick)

Open kiln without fixed
walls (rectangular) 1–10 <60 3.5–5.5 10–20 >500 (soot presence) >400 Chile [29]; Peru [30]; Mexico [31]

Open kiln with fixed walls 2–20 20–60 3.0–5.0 20–30 >500 (soot presence) 325–375 Indonesia [32]; Mexico [33]; Scotland [34]
Open kiln without fixed

walls (cylindrical) 2–15 <60 3.0–5.0 10–20 >500 (soot presence) >400 Colombia [35]; Peru [36]; Colombia [37]

Down-draught <30 <60 2.0–4.0 35–45 250–600 250–300 Bangladesh [38]; Indonesia [39]; India [40]
MK >100 5–120 2.0–2.5 60–70 100–150 60–150 Mexico [41]; Bolivia [42]

Dome 30–200 60–200 2.0–4.0 35–45 <250 250–300 Brazil [43]; Taiwán [44]; Colombia [45]
Hoffman 30–200 60–200 2.0–4.0 45–55 250–600 100–130 Malaysia [8]; Brazil [46]; Poland [47]

Bull’s Trench >300 30–200 1.0–1.5 50–60 125–600 120–300 India [48]; South and South-East Asia [49]
Cedan >200 >200 1.0–2.0 50–60 <250 165–185 Brazil [50]
Zigzag >300 100–200 1.0–1.2 50–60 70–500 90–110 India [48]; Nepal [51]

Multi-chambers 30–200 <60 2.0–4.0 50–60 <250 210–300 Peru [52]; Egypt [53]; Colombia [54]
Mobile (modular) >200 50–200 1.0–2.0 55–65 <250 160–180 Rusia [55]; Brazil, Peru, Bolivia & Paraguay [26]

Vertical shaft 30–200 60–200 0.8–1.5 70–80 <250 60–90 India [40]; China [56]; Macedonia [57]
Tunnel >200 >200 1.5–2 60–70 <250 150–170 Egypt [58]; Kuwait [59]; Brazil [60]
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Future Trends for BK Type

The artisan brick sector is in a period that must adopt efficient technologies and production
practices. This sector requires a comprehensive approach. Brick producers must be aware of the
benefits that technological change would bring beyond regulatory compliance. The use of validated
technologies and low emission practices depend on having this type of technology available in the
market: where, the brick producers are the demand for this technology, while the supply is technology
suppliers, consultants and financial institutions. Thus, in order to achieve the transition from the
artisanal to the mechanized, programs with favorable credit conditions for the producer must be
promoted. Therefore, validated information on low-cost technologies with a rapid return on investment
must be generated in order to show producers the profitability of the proposed technologies. Examples
of successful models are needed, that pass on the experience of early innovators and encourage others
to implement change.

Nowadays, a new BK should consider (1) a long fire zone to allow almost complete combustion
and fuel efficiency, (2) roof, since it implies significant economic and workforce benefits, (3) low
chimney to minimize fuel waste, (4) scalability in both continuous or semi-continuous mode and (5)
easy implementation of mechanization. There are several companies that propose innovative designs
of brick kilns, e.g., Hzzk’s design [61] proposes a long fire zone that accelerates the pre-drying of
“green bricks” before full firing and enables faster fire progression, increases brick production and
energy efficiency. This long fire zone assisted by a small fan within the kiln creates a unique induced
draught, enabling even heat distribution, maximum heat generation and maximum energy extraction
from fuel sources. The fire, controlled through the use of unique HZZK internal kiln components,
is pulled through stationary bricks placed in a zigzag fashion. This control fire (1) provides consistent
quality bricks with even cure and brick shrinkage, (2) enables less than 2% fired brick waste and
(3) due to the excellent control of the fire and the low brick setting height, it is ideally suited to fire
perforated bricks and thin walled hollow large clay blocks; this conserves top soil, minimizes land
degradation and reduces energy requirements for the production of bricks and clay products. On the
other hand, the roof (1) protects kiln workers from all types of weather so that working conditions
are improved both day and night and during all seasons, (2) allows for the brick-making season to be
extended into the monsoon season, thus increasing annual brick production, (3) overcomes the high
‘overlooked costs’ of drying out a wet kiln after every winter season, (4) allows for water collection
(drinking and sanitation) and (5) allows solar panels to be mounted on the roof, supplying power
for the fan and lighting. Moreover, a low chimney is not needed as draught is created by induced
draught fan and the emissions are low. Thus, (1) the construction time and construction costs are low,
(2) exhaust gases are minimized through almost complete fuel combustion and (3) minimal emissions
are released via small chimney made of metal or brick extending just above the roof line. HZZK’s design
considers brick production requirements (output demand) that determines the size/footprint of the
kiln and an increase or decrease in the number of kiln chambers. Options exist to operate in both
a continuous or semi-continuous mode, allowing for smaller or larger outputs depending on the
operator’s requirements i.e., large scale (industrial) or small scale (village/rural setting). Finally, the
mechanization/machine automation systems reduce handling of bricks and reduces risk of associated
damage. Automatic fuel feeders can be incorporated into the kiln design, providing mechanized
fuel distribution.

Trends in new brick kiln designs aim to improve the tunnel kiln as it is the most efficient kiln
type [59,62,63]. They are composed of a collection of attached opposite directed heat exchangers with
the solids on the kiln car that move counter-current with the air flow. There are three main temperature
zones in the kiln: preheating, firing and cooling zone. Tunnel kilns are long structure kilns in which the
green products are heated up in the preheating zone, and then to the sintering temperature, which is
different from one product to another. After that, the product goes through the cooling zone, where it
is cooled down to a temperature near the ambient temperature [58].
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3.2. BK Emissions

Several studies about the manufacture of handmade bricks show that pollutant gases are emitted
such as SOx, NOx, CO, CO2, particulate matter (PM) or total suspended particulates (TSP)—particles
that pass through a size-selective inlet with a 50% cut-off at 1, 2.5 and 10 µm aerodynamic diameter
(PM1, PM2.5 and PM10, respectively)—metals (Cu, Cr, Pb, Ni, Zn, Cd, Fe, Mn), fluorides and organic
compounds (methane, ethane, volatile organic compounds (VOCs)), persistent organic compounds
(POPs) and some hazardous air pollutants such as hydrogen chloride (HCl) and hydrogen cyanide
(HCN) [64–69]. Akinshipe and Kornelius [69] reported that the contribution of brick production to
global emissions of black carbon, organic carbon, PM1, SO2 and CO is 5.5%, 2.6%, 1.6%, 2.9% and 1.6%,
respectively. Meanwhile, the contribution of South-West-Central Asia’s brick production to regional
emissions of black carbon is 10.4%, e.g., the total emissions from the brick manufacturing in the Greater
Dhaka region, to produce 3.5 billion bricks per year has been estimated about 23,300 t of PM2.5, 15,500 t
of SO2, 302,000 t of CO, 6000 t of black carbon and 1.8 million of CO2 [67].

The small particle size of pollutants promotes respiratory diseases [70–73], along with causing
environmental stress to plant species [67,74,75]. Therefore, investments aimed at new technologies for
reducing emissions are fully justified.

The main technological causes of these pollutant emissions are (1) the nature of the fuel and (2)
poor air circulation inside the BK. Febres [76] reports that used tires are frequently used in Peruvian
ABKs, due to the low cost and shorter cooking time, which according to operators is almost three
times less than with charcoal. ABKs use inefficient burning technology that generates substantial air
pollution due to the market in which they are exposed. Luby et al. [65] reported that for the brick
buyers, the bricks manufactured in ABK worked well for most construction purposes and cost 40%
less than bricks manufactured in more modern, less polluting, kilns. BK owners favored approaches
with rapid high returns on a modest investment. They preferred kilns that operate only during the
dry season, allowing them to use cheaper, low-lying flood plain land and inexpensive seasonal labor.
Many BK violate environmental regulations but shortages of equipment and man-power combined
with the kiln owner’s political connections, undermine law enforcement. The brick manufacturing
system is an economic equilibrium with the manufacture of inexpensive bricks, supplying the demand
for construction materials but at a high cost to the environment and the population’s health. Akinshipe
and Kornelius [69] made a ranking of brick kiln technologies based on available emission metrics.
The technologies were then ranked in order of their potential for atmospheric emissions, from least
contaminating to most contaminiating: (1) Vertical shaft brick kiln, (2) Zigzag kiln, (3) US coal-fired kiln,
(4) Clamp kiln, (5) Fixed chimney Bull’s trench kiln, (6) Down-draught kiln and (8) Bull’s trench kiln.

Future Trends for BK Emissions

A basic principle of the ABKs design is that the kilns should not emit polluting gases. Currently,
studies on the pollution of gases emitted by a traditional BK are very detailed and specific, which supports
the decision to change technology. Tabinda et al. [77] compared the concentration of pollutants and
their level of dispersion in the atmosphere from the BKs plume using different types of fuels. In turn,
Nasim and Sharif [78] raised the need for non-polluting kilns through their comparative study between
a Bull’s Trench Kiln (BTK) and an Induced Draft Zigzag Kiln (IDZZK). Here, they question themselves:
Do ZZKs tend to be cleaner than BTKs? Will operating ZZKs generate any reasonable economic and
social benefits? New technologies must improve the fluid dynamics of the gases inside the BK so that the
emissions from the BK do not pollute. This is achieved through: (1) the use of fans, (2) mechanization of
brick entry and removal and (3) automation of fuel injection [79–81]. Tasnim et al. [82] demonstrated
through computational fluid dynamics (CFD) simulations that the Zigzag kiln (ZZK) is more efficient
than the Fixed Chimney kilns (FCK), since in the ZZK, the swirling motion is created by turbulence.
This “hot air” travels farther, so the mixture is uniform and appropriate. Therefore, the creation and
propagation of the flame is good enough to use the fuel efficiently. Less energy is needed in this case.
Therefore, in this case the emission in the ZZK is much lower than that of the FCK.



Sustainability 2020, 12, 7724 10 of 19

On the other hand, in Mexico and Peru organic additives have been used, obtaining an alteration in
the structure of the mixture resulting in a solid, permeable, resistant, moldable, recyclable composition
and less contamination in the burning stage [76].

Finally, the aspects of fuel quality are detailed below, since it is also an important factor in reducing
the emission of contaminating gases.

3.3. Fuel Used in BK

The fuel used in ABKs is of poor quality, i.e., (1) it does not have a uniform particle size, (2) it has
fluctuating humidity, (3) it contains organic matter and (4) it is even supplemented by domestic solid
waste. The BKs used in all countries consume a variety of fuels for their operation, including firewood,
bagasse, rice husk and coal [83]. Many kilns also use a mixture of fuels. Although, some authors
describe coal as the traditional fuel in brick firing [84,85]. In other cases, fuels are added separately and
in others, they are pre-mixed. In addition, fuel may be added to the clay during the clay preparation
process. The fuel mixed in the clay is often a low calorific fuel such as ash [86]. On the other hand,
in Latin American brick manufacturing industry, the main source of fuel is biomass. For example,
in Chile, waste wood or “lampazo” is used as fuel [87].

Future Trends for Fuel Used in BK

Currently, the artisanal brick industry has a fuel switch process due to (1) lower combustion costs,
(2) organic waste near the production site and (3) lower pollutant emissions. It should be noted that the
organic waste with the greatest energy potential is agricultural waste [88,89]. Zavaleta [90] researched
the change from firewood to chestnut shells for Bolivia’s artisan brick industry, since 70% of the world’s
chestnut production is in Bolivia. In addition, the exploitation of Brazil chestnut shells helps to stop the
depredation of the Amazon rainforest. The chestnut shell used at the beginning of combustion process,
along with implementation of fans, allows for a reduction of 32% in fuel consumption. Bahena et al. [91]
shows the use of a mixture of coconut shells with firewood in the artisan brick sector of Guerrero
(Mexico), due to the characteristics of the area’s vegetation.

The global trend is for solid organic fuel to go through a torrefaction process and then an increase
in density (pellets), because it is a viable energy variant for artisan brick producers, since they could
make a stable contribution to community development with a significant social impact by creating
new sources of employment. In addition, pellets contribute to the (1) use of non-polluting energy and
(2) recycling of organic waste, which in many cases has no intended destination. Bhutto et al. [92]
presents the pellets potential in Pakistan as renewable energy resources and examine the possibilities
of adopting an efficient use of this biomass for brick kilns. Kpalo et al. [93] report that the artisan
brick industry is a good example of the use of carbonized (charcoal) and non-carbonized (pellets)
biomass briquettes.

3.4. Energy Efficiency of BK

The principal index for an energetic assessment is the Specific Energy Consumption (SEC),
which is measured in MJ/kg. Widely varying data are found in the literature of SEC values for brick
kilns [51,85,94]. This can be reasonably attributed to differences in the (1) fuel heating power, (2) size
of bricks, (3) weight of bricks and (4) quality of fired bricks [25,52]. Weyant et al. [86] reported that a
Bull’s Trench Kiln (Hapur, India), a natural Draft zigzag (Greater Noida, India), a Bull’s Trench Kiln
(Kathmandu, Nepal), a forced Draft zigzag (Kathmandu, Nepal), a large Clamp (Sangli, India) and
small Clamp (Pune, India) have an SEC of 1.17, 1.07, 1.17, 1.14, 1.33 and 1.90 MJ/kg brick, respectively.

Traditionally, some of the efficiency improvement measures, which were found to be effective
included (1) adding roofs to clamps, (2) providing permanent walls that are insulated with mud and a
biomass residue (such as rice husk), (3) increasing the height of the kilns, (4) enclosing the firebox and
(5) adding a grate to the firebox [82]. Considerable energy saving has been reported by Barriga [95]
when small pieces of wood were used and the burning rate was carefully controlled.



Sustainability 2020, 12, 7724 11 of 19

Nowadays, the energy efficiency of industrial brick kiln is very knowing. Rahman and Kazi [79]
reported that Tunnel kiln and Hybrid Hoffman kiln are energy-efficient brick kiln technologies.
These kiln technologies have lower SEC and therefore burn less fuel and release fewer greenhouse
gases (GHGs) per output unit. Additionally, energy-efficient technologies give operators more control
over the fuel combustion process, which results in more complete carbonaceous fuel combustion and
decreased emissions of black carbon and other PM. These technologies can provide financial returns
through savings in fuel cost per output unit.

Future Trends for Energy Efficiency of Brick Kiln

The global trend is to make bricks with more energy-efficient processes. This leads to lower
pollutant emissions, improved fuel quality, and reduced fuel consumption. Lloyd [96] studied the energy
efficiency in clay brick manufacturing in South Africa. Studies were carried out on a variety of such
kilns. For medium-sized producers, with a capacity of 30 million bricks per annum, a vertical shaft kiln
appeared ideal. They required over 2 MJ/kg, but this included the energy necessary to dry the green brick.
Some consideration is also given to changes in the design of the standard brick, particularly the use of
perforations within the brick. These improve the heat transfer during firing and require less energy per
brick because they weigh less. Being lighter, they are also cheaper to transport than a solid brick of the
same size. P.N. et al. [97] researched the reduction of the brick firing temperature in the kiln to about
600 ◦C, thereby reducing the cost of production and making the entire process environment-friendly.
This work presented a suitable alternative for the safe disposal of industrial debris such as quarry dust
and glass powder by incorporating them as a partial substitute for river sand, which is one of the costliest
constituents of clay brick and thereby further reducing the cost of production.

The technology of the future must ensure that BKs have a SEC < 1 MJ/kg.

3.5. Phenomenological Studies About Clay Brick Firing Process

These researches are divided into chemical reactions and fluid dynamics during brick firing.
Akinshipe and Kornelius [94] described in exact detail the six stages during clay brick firing process:

(1) Evaporation (20–150 ◦C), slow heating stage where evaporation of the water that is added into
the clay mixture during processing (free water). It is essential at this stage to maintain gradual
increase in temperature to prevent the bricks from cracking, since the outer surface of the bricks
will contract at a faster rate than inside the bricks, leading to cracking. An endothermic reaction
is observed at this stage due to the loss of the free water.

(2) Dehydration (149–650 ◦C), in this stage burning out and breaking down the carbonaceous matter
and carbonates, as well as the “combined water” occurs. Rapid heating may cause an atmosphere
of steam to persist around and within the bricks, that produces discoloration or dark-colored,
cored and bloated bricks, due to insufficient supply of oxygen within the bricks. An endothermic
reaction is observed at this stage due to further release of water and carbonaceous matter.

(3) Oxidation (300–982 ◦C), this stage depends on (a) the rate of heating, (b) the quantity of carbon
present in the clay, (c) the amount of excess air available in the combustion chamber, (d) the
density and (e) area to volume ratio of the clay bricks. In order to produce quality bricks, it is
essential that any carbonaceous residue matter be combusted and all iron residues oxidized to its
oxides at this stage. This could be achieved by: ensuring excess air of 50% or more is circulated
within the combustion chamber; holding the temperature of oxidation at about 800–900 ◦C for
a few days (3–4 days in some kilns); and keeping the CO2 level in the flue gas at 10%–12%.
An exothermic reaction is observed at this stage and is due to the oxidation of organic compounds
and, subsequently, sulfide compounds in the clay material. This exothermic reaction is observed
from 300 ◦C up to 450 ◦C, and then an endothermic reaction sets in. This is attributed to the loss
of water from the crystal structure of the mineral and a change in crystalline phase of the quartz
from α to β form. The carbonates decompose in heating to form oxides and CO2:
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FeSO3(s) → FeO(s) + CO2(s) (1)

MgSO3(s) →MgO(s) + CO2(s) (2)

CaCO3(s) → CaO(s) + CO2(s) (3)

The loss of water is achieved without damage or shrinkage of the of the clay mineral lattice
structure. The most likely compound to be formed during brick firing is calcium sulfate (CaSO4),
in a complex reaction proposed by Tourneret et al. [98], as follows:

9CaCO3(s) + 9SO2(g) → 6CaSO4(s) + CaSO3(s) + 2CaS(s) + 9CO2(g) (4)

4CaSO3(s) → 3CaSO4(s) + CaS(s) (5)

CaS(s) + 2O2(g) → CaSO4(s) (6)

CaO(s) + SO2(g) + 3CO(g) → CaS(s) + 3CO2(g) (7)

(4) Vitrification (900–1316 ◦C), the strength of the fired bricks is developed during vitrification, by
sintering of clay particles and melting of the clay mass. The solid particles are coated with a
liquid that, when cooled, forms a glassy solid and binds the particles together. The strength
of the fired bricks depends on (a) the maximum temperature reached, (b) the duration of the
vitrification stage or maximum temperature and (c) amount of fluxes (potash, soda, magnesia,
lime and ferrous oxide) present in the clay. At this stage, a series of exothermic reactions are
observed, due to the slow oxidation of sulfur compounds and possibly residual organic material,
as well as formation of new crystalline phases.

(5) Flashing (1150–1316 ◦C), holding the peak or finishing temperature for a period in order to impact
the required color to the bricks by the addition of “un-combusted fuel” to the kiln.

(6) Cooling (1316–20 ◦C), this is the decrease of kiln temperature from peak to ambient temperature,
lasting a few days (4–5 days or more).

The research about the fluid dynamic behavior of the fluid inside the kiln allows for the
improvement of (1) the distribution of the fluid inside the kiln, (2) the residence time, (3) the optimal
distribution of the bricks and (4) the fuel consumption. The fluid dynamics of the fluid inside the
brick kiln has been studied in tunnel kilns by means of 3D modeling and validated with experimental
results; Almutari et al. [59] report the results of airflow in tunnel kilns using a 3D computational
fluid dynamics (CFD) model. The numerical results demonstrated fluid flow malfunctions in tunnel
kilns, including an intriguing phenomenon of long flow separation zone behind the brick setting.
Tasnim et al. [82] evaluate the performance of Fixed Chimney kiln and Zigzag kiln through CFD
simulation. CFD analysis helps to simulate the temperature profile of the brick kilns, the mass flow
fractions of CO2 and NOx emissions at the outlet, and also the air velocity profile inside the kiln.

Future Trends about Phenomenological Studies

Currently, computational capacity allows for computational simulations of complex physical
systems. The researches about the phenomenology of brick firing using computational simulations
are very scarce. BK designs based on computational simulations foster collaboration among global
engineering teams and increase data sharing to innovate product design and reduce development
costs. The researches point to computational simulations that allow simultaneous analysis of (1) heat
transfer, (2) fluid dynamics and (3) chemical reactions (combustion and firing). This will allow the
results to be obtained closer to what actually happens during brick firing. These types of simulations
depend on the computer capacity available in the research group. Bustos et al. [99] carried out this
type of simulation for the elaboration of charcoal in a brick kiln, and their results provide important
information for the improvements in the kiln operation and allow establishment of consistent initial
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conditions of temperature and heat flux for kinetics models for charcoal cooling in kilns. Alrahmani
et al. [100] researched the effect of lattice setting density on fluid flow and convective heat transfer
characteristics of bricks in Tunnel Kilns, using a 3D-computational fluid dynamics model with k–ω
turbulence model. The computational simulations allowed that the authors report the effect of setting
density on flow uniformity, pressure drop, pumping power and convective heat transfer coefficients.

4. Discussions and Conclusions

Brick making is an ancient technology and the basic concept of brick kiln technology in developing
countries has changed little over the past thousands of years. Bricks are made, dried, fired and cooled.
Kilns first started in pits, and walls were then added. The addition of a chimney stack improved the
air flow or draught of the kiln, thus burning the fuel more completely. Several variations have been
invented over the years with varying degrees of efficiency and cost [61].

The technology transfer and skills to artisan brick-makers has been increasing over the past few
years, but other challenges and barriers remain: (1) a mentality focused on maintaining cultural habit
in traditional business practices and operations; (2) restricted access to financing to obtain preferential
green credit lines to support investment costs; (3) lack of detailed knowledge of practices and costs of
innovative operations; (4) environmental impact assessment requirements and process take longer
than expected; and (5) adverse investment climate due to fluctuating financial situation, both locally
and internationally. Therefore, we suggest that the authority promote “sustainable brick production”
(SBP) through state policy. The SBP should be based on sustainable development actions, achieving a
balance between the three main pillars: Social, Economy and Environment. In other words, actions
that are socially accepted, activate the market and are without environmental impact. For example,
(1) reduction of taxes for brick-makers who carried out innovations that allow reducing: polluting
emissions, fuel consumption and process time; (2) education programs aimed at artisan brick-makers,
about sustainable development and/or management of sustainable projects; (3) promote government
innovation projects jointly executed by artisan brick-makers and researchers; and (4) publicity of SBP in
the media. The impact of these suggestions will be a less polluting brick industry and a better quality
of life for brick-makers.

Most of the future trends are towards improved combustion, both in terms of cost reduction
and reduction of pollutant emissions. Good combustion in the ABK is achieved by correctly sizing
the combustion chambers according to the type of fuel and the load to be processed. For example,
a very small combustion chamber, fed with a lot of wood, may not receive enough air for a good burn,
and thus generate a lot of soot and wasted energy. In addition, combustion must be controlled and
the fuel feed must be as continuous as possible. On the other hand, using air injection by means of
fans allows for (1) a reduction in burning time, (2) a decrease in fuel consumption by 30% and (3) an
improvement in the quality of the product, due to the adequate supply of heat. The latter implies that
the fans reduce the poor heat distribution problems in the furnace, avoid burning with yellowish flame
and excessive soot generation, which are indicators of inefficient combustion due to lack of air and
consequently energy loss. Obviously, the fans generate a consumption of electricity or liquid fuels but,
on the contrary, does not represent a negative impact on production costs; it can be compensated by the
low price of wood, the reduction in operating times, and improving the final quality of products [90].

The chemical reactions involved in the brick firing allow to visualize the generation of CO2 not
only in the combustion but also in the chemical decomposition of the clay. Therefore, the brick industry
will continue to emit CO2 despite all the technological advances that are adopted. This indicates that
there should be a minimum forest area to compensate for these emissions.

The use of organic waste in the form of pellets improves the density (physical and energetic) of
this waste. This leads to an improvement in the combustion process because the compaction of the
organic waste, together with a previous roasting process, allows for a concentration of energy three
times higher than that of the original waste [92,101,102].
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Thermal insulation (proper sealing of walls, ceiling doors) can significantly increase the efficiency
of ABK and contribute to greater energy savings. This can be seen in CFD simulations, as an adiabatic
kiln, which is typically assumed in these simulations. Another aspect that can be highlighted in the CFD
simulations is the distribution of the bricks in the BK, since an appropriate arrangement of the bricks
helps to ensure efficient firing and improves the quality of the product, reducing fuel consumption and
operating time by up to 5%.

The researches about ABK should be oriented towards the adaptation of technologies for small
producers, since only large brick producers have access to more thermally efficient and profitable
processes. A great first step would be CFD simulations for small ABK.

Finally, we conclude that this article helps to develop a consistent scientific approach through
discussing the state-of-the-art and future trends of the design and construction of artisan brick kilns.
This article exposes issues that have not yet been massively researched, for example, fluid dynamics
inside brick kilns. On the other hand, the elaboration of integral diagnostics to the artisan brick
sector is of great importance, since it allows to identify the characteristics of the area where the
changes will be implemented, to make adjustments to existing technology and to create strategies.
In addition, the modification of the artisan brick activity is a cultural and professional challenge for
the implementers of new technologies, where the management of such implementers has to take into
account all socio-cultural barriers in order to achieve successful results. Therefore, management is the
dimension that can make the environment and perception have positive effects on the adoption of
technological change, since management includes planning actions aimed at shaping attitudes towards
technology, based on the environment and the characteristics of the population. Then, the future
technological trends must be more economical kilns and ensuring the reduction of environmental
pollution. The new brick kiln designs that will emerge in the future must be justified with the
fundamentals of heat transfer, fluid dynamics and chemical reactions, and not only with the experience
transmitted from generation to generation.
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