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Abstract

Background: Adiposity is a strong risk factor for cancer incidence and mortality. However, most of the evidence available
has focused on body mass index (BMI) as a marker of adiposity. There is limited evidence on relationships of cancer with
other adiposity markers, and if these associations are linear or not. The aim of this study was to investigate the associations
of six adiposity markers with incidence and mortality from 24 cancers by accounting for potential non-linear associations.

Methods: A total of 437,393 participants (53.8% women; mean age 56.3 years) from the UK Biobank prospective cohort
study were included in this study. The median follow-up was 8.8 years (interquartile range 7.9 to 9.6) for mortality and
9.3 years (IQR 8.6 to 9.9) for cancer incidence. Adiposity-related exposures were BMI, body fat percentage, waist-hip ratio,
waist-height ratio, and waist and hip circumference. Incidence and mortality of 24 cancers sites were the outcomes. Cox
proportional hazard models were used with each of the exposure variables fitted separately on penalised cubic splines.

Results: During follow-up, 47,882 individuals developed cancer and 11,265 died due to cancer during the follow-up period.
All adiposity markers had similar associations with overall cancer incidence. BMI was associated with a higher incidence of
10 cancers (stomach cardia (hazard ratio per 1 SD increment 1.35, (95% CI 1.23; 1.47)), gallbladder (1.33 (1.12; 1.58)), liver
(1.27 (1.19; 1.36)), kidney (1.26 (1.20; 1.33)), pancreas (1.12 (1.06; 1.19)), bladder (1.09 (1.04; 1.14)), colorectal (1.10 (1.06; 1.13)),
endometrial (1.73 (1.65; 1.82)), uterine (1.68 (1.60; 1.75)), and breast cancer (1.08 (1.05; 1.11))) and overall cancer (1.03 (1.02;
1.04)). All these associations were linear except for breast cancer in postmenopausal women. Similar results were observed
when other markers of central and overall adiposity were used. For mortality, nine cancer sites were linearly associated with
BMI and eight with waist circumference and body fat percentage.

Conclusion: Adiposity, regardless of the marker used, was associated with an increased risk in 10 cancer sites.
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Background
Currently, 67% of men and 62% of women are over-
weight or obese in the UK. Obesity has strong associ-
ation with increased incidence of, and premature
mortality from, some types of cancer [1, 2]. A recent re-
port by the World Cancer Research Fund (WCRF) sum-
marises the evidence showing that high BMI is
associated with higher risk of 12 cancers, including colo-
rectal, breast in postmenopausal women, oesophageal,
pancreatic, liver, kidney, oral, pharynx and larynx, stom-
ach cardia, gallbladder, ovarian, (advanced) prostate, and
womb cancers [3]. However, the WCRF report also
highlighted the lack of evidence regarding the associ-
ation of cancer with other markers of adiposity (i.e. cen-
tral adiposity and body fat).
Although previous studies have reported the associ-

ation of several cancer sites with different markers of
adiposity [2, 4, 5], most of these studies have been con-
ducted in Asian populations [6, 7], Lee et al. reported
the associations of 18 cancers with waist circumference
(WC) in 22.9 million Korean adults [7]. Similarly, Wang
et al. reported the associations of four markers of adi-
posity including BMI, WC, waist-to-hip ratio (WHR),
and body fat percentage (BF%) with 15 cancers in the
China Kadoorie Biobank [6]. Evidence derived from
white or British populations has focused mainly on a
small number of cancer sites (i.e. breast, colon, endo-
metrium, and prostate) [8–11], or has been restricted to
BMI as a marker of adiposity [2, 4, 5]. In 2014, Bhas-
karan et al. [2] reported that BMI was associated with 17
cancers in 5.2 million British adults. This study also
highlighted the need for further evidence for other adi-
posity markers since measures of body fat distribution,
such as central obesity and body fat might be stronger
determinants of specific cancer sites than BMI [12], as
observed for other health outcomes such as cardiovascu-
lar diseases [13]. Moreover, most of the evidence avail-
able to date have assumed a linear association between
markers of adiposity and cancer risk from most common
sites (colorectal, breast cancer, liver, kidney, and gall-
bladder) [4, 12], with a limited number of studies inves-
tigating non-linear association [2, 14, 15]. To address
these limitations, we used data from the UK Biobank co-
hort, a large prospective cohort study, to investigate the
associations of six adiposity markers with incidence and
mortality from 24 cancers by accounting for potential
non-linear associations.

Methods
Study design
UK Biobank recruited more than 500,000 participants
(aged 37–73 years, 56.3% were women) between 2006
and 2010 [16]. Participants attended one of 22 assess-
ment centres across England, Scotland, and Wales,

where they completed a self-administered, touch-
screen questionnaire and face-to-face interviews [17,
18]. After excluding participants with a prevalent can-
cer diagnosis at baseline (n = 41,460), those with miss-
ing data for exposures and covariates (n = 21,064),
and participants who were classified as underweight
(n = 2629), 437,393 participants were finally included
in the study. The outcomes defined for this study
were incidence and mortality of overall cancer and 24
specific cancers. Of the 24 cancers, 17 were relevant
to both men and women, two were specific to men
(testicular and prostate cancer), and five were specific
to women (breast, endometrium, uterine, cervix and
ovary). The exposures were six adiposity-related
markers, including BMI, WC, WHR, waist-to-height
ratio (WHtR), hip circumference (HC), and BF%. The
covariates were sociodemographic factors (age, ethni-
city, education, and Townsend deprivation), smoking
status, dietary intake (red meat, processed meat, fruit
and vegetables, oily fish, and alcohol), physical activ-
ity, and sedentary behaviour. Additional cancer-
specific covariates were added for women-related can-
cer (hormonal replacement, ages at first live birth, last
live birth, and at menarche). Additionally, sun expos-
ition was added as a covariate for melanoma cancer,
and for lung, oesophageal, and oral cancer, we re-
stricted the analysis to never smoker only. Association
between adiposity markers and cancer mortality is
likely the combined effect of adiposity’s association
with incident cancer, and adiposity’s association with
cancer fatality among cancer patients.

Procedures
Date of death was obtained from death certificates
held within the National Health Service Information
Centre (England and Wales) and the National Health
Service Central Register Scotland (Scotland). Date and
cause of hospital admissions were obtained through
record linkage to Health Episode Statistics (England
and Wales) and Scottish Morbidity Records
(Scotland). Detailed information about the linkage
procedures can be found at http://content.digital.nhs.
uk/services. At the time of analysis, mortality data
were available up to 01 June 2020. Mortality analysis
was therefore censored at this date or date of death,
whichever occurred earlier. Hospital admission data
were available until 31 March 2017 for Scotland and
Wales and until 01 June 2020 for England, resulting
in analyses of incident outcomes being censored at
this date or the date of relevant hospitalisation or
death, whichever occurred earlier. We defined incident
cancer as fatal or nonfatal events. The International Clas-
sification of Diseases, 10th revision (ICD-10), was used to
define the following 27 cancers: overall cancer (C00–C97,
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D37, D48), oral (lip, pharynx and larynx) (C00–C14),
oesophagus (C15) upper oesophagus (C15.0, 15.1, 15.3,
and 15.4), stomach (C16) stomach cardia (C16.0), stomach
non cardia (C16.1–16.6), colorectal (C18, C19, and C20),
colon proximal (C 18.0–18.5), colon distal (C18.6, C18.7),
colon (C18.0-C18.9), rectum (C19–C20), liver (C22), gall-
bladder (C23), pancreas (C25), lung (C34), malignant mel-
anoma (C43), breast (C50), uterine (C54–C55), cervix
(C53), endometrium (C54), ovary (C56), prostate (C61),
testis (C62), kidney (C64-C65), bladder (C67), brain (C71),
thyroid (C73), lymphatic and haematopoietic tissue (C81–
C96), non-Hodgkin lymphoma (C82–C85), multiple mye-
loma (C90), and leukaemia (C91–C95).
The exposures were six adiposity-related markers

(BMI, WC, WHR, WHtR, HC, and BF%) measured by
trained staff using standardised protocols across the
assessment centres at baseline. Height was measured
to the nearest centimetre, using a Seca 202 stadi-
ometer, and body weight to the nearest 0.1 kg, using
a Tanita BC-418 body composition analyser. BMI was
calculated as weight (kg) divided by height (m)
squared and classified into the following categories:
underweight (< 18.5 kg/m2), normal weight (18.5 to
< 25 kg/m2), overweight (25 to < 30 kg/m2), and obese
(> 30 kg/m2) [19].
BF% was measured using the Tanita BC-418 MA body

composition analyser (fat mass divided by the total body
mass).
The natural indent was used to measure WC (the um-

bilicus was used if the natural indent could not be ob-
served) and used to determine central obesity (WC ≥ 88
cm for women and WC ≥ 102 cm for men). HC was re-
corded at the widest part of the hips. WHR and WHtR
are the ratios of the waist-to-hip circumference and
waist circumference to height, respectively.
Age, sex, ethnicity, smoking status, diet (portions

of fruits and vegetables, red and processed meat, and oily
fish) and alcohol intake (daily, 2–4 times a week, once
or twice a week, 1–3 time a month, special occasions
and never), sun exposition (do not go out in the sun-
shine, rarely, sometimes, most of the time, always), and
female-specific factors were self-reported at the baseline
assessment by touch-screen questionnaire. Townsend
area deprivation index was derived from the postcode of
residence using aggregated data on unemployment, car
and homeownership, and household overcrowding [20].
Educational qualification was self-reported. Physical ac-
tivity level over a typical week was self-reported using
the International Physical Activity Questionnaire and re-
ported as metabolic equivalent of task (MET) per week
[21]. Time spent on discretionary sedentary behaviours
was derived from the questionnaire and included time
spent in front of a TV or computer or driving during
leisure time. Further details of these measurements can

be found in the UK Biobank online protocol (http://
www.ukbiobank.ac.uk).

Statistical analyses
Cox proportional hazard models were used to estimate
hazard ratios (HR) and 95% confidence intervals for each
adiposity marker (BMI, WC, BF%, WHR, WHtR, and
HC) separately with incidence and mortality for 24 can-
cers and all-cause cancer. Duration of follow-up was
used as the timeline variable. The exposure variables
were fitted separately on penalised cubic splines to in-
vestigate non-linear associations between each adiposity
exposure and the outcomes. Penalised spline is a vari-
ation of basis spline [22]. Non-linearity was tested by
likelihood ratio tests. To compare the associations be-
tween cancer across different adiposity markers, all adi-
posity exposures were standardised by sex and HR were
expressed per 1-standard deviation increment (1-SD was
equivalent to BMI units of 4.2 and 5.1 kg/m2, WC 11.3
and 12.5 cm, WHR 0.07 and 0.07, WHtR 6.5 and 7.9,
HC 7.6 and 10.4 cm, BF% 5.8 and 6.9%, and BFI 2.6 and
3.8 kg/m2 for men and women, respectively). Participants
with prevalent cancer at the baseline assessment were
excluded from the study (n = 41,406). Underweight par-
ticipants were also excluded from the study (n = 2629).
In addition, a landmark analysis was performed to reduce
the potential for reverse causality, with follow-up com-
mencing 2 years after recruitment. The association be-
tween adiposity and oesophageal, oral, and lung cancer
was restricted to participants who reported being never
smokers, to avoid reverse causation bias. For breast can-
cer, all analyses were stratified by menopausal status. Add-
itional sensitivity analyses were performed including
underweight people and adding height as a covariate.
Population attributable fractions (PAFs), assuming

causality, were calculated based on the BMI distribution
of Health Surveys of England, Scotland, and Wales in
2018 [23–25] and the HRs derived from this study using
the standard formula with 95% confidence interval (CI)
and P values estimated using bootstrapping (formula
shown in Additional file 1: Figure S1) [26].
To compare cancer risk discrimination between BMI

and the remaining five adiposity markers, we calculated
Harrell’s C-index (the probability of concordance be-
tween observed and predicted responses) for a model
that included the adiposity marker and covariates (age,
ethnicity, deprivation, education, smoking, alcohol con-
sumption, intakes of fruit and vegetables, red and proc-
essed meat, oily fish, physical activity, and sedentary
behaviours). The model with BMI was defined as base-
line model. The C-indices of the baseline model and the
C-index difference between other adiposity model and
the baseline model were reported. The variance of the
C-indices was calculated using the formula as described
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Table 1 Cohort baseline characteristics

Normal weight Overweight Obese Overall

n 143,460 (32.8%) 187,563 (42.9%) 106,370 (24.3%) 437,393

Age, mean (SD) 55.4 (8.22) 56.7 (8.07) 56.6 (7.90) 56.3 (8.10)

Sex

Females 92,922 (64.8%) 87,097 (46.4%) 55,246 (51.9%) 235,265 (53.8%)

Males 50,538 (35.2%) 100,466 (53.6%) 51,124 (48.1%) 202,128 (46.2%)

Townsend deprivation index

Lower deprivation 51,511 (35.9%) 65,530 (34.9%) 30,740 (28.9%) 147,781 (33.8%)

Middle deprivation 48,183 (33.6%) 63,918 (34.1%) 34,366 (32.3%) 146,467 (33.5%)

Higher deprivation 43,766 (30.5%) 58,115 (31.0%) 41,264 (38.8%) 143,145 (32.7%)

Education

College or University degree 64,263 (44.8%) 69,351 (37.0%) 32,442 (30.5%) 166,056 (38.0%)

A levels/AS levels or equivalent 17,455 (12.2%) 20,738 (11.1%) 11,116 (10.5%) 49,309 (11.3%)

O levels/GCSEs or equivalent 29,336 (20.4%) 40,223 (21.4%) 23,510 (22.1%) 93,069 (21.3%)

SEs or equivalent/NVQ or HND or HNC or equivalent 13,885 (9.7%) 23,548 (12.6%) 15,352 (14.4%) 52,785 (12.1%)

Missing 18,521 (12.9%) 33,703 (18.0%) 23,950 (22.5%) 76,174 (17.4%)

Ethnicity

White 136,331 (95.0%) 177,574 (94.7%) 99,866 (93.9%) 413,771 (94.6%)

Mixed 2101 (1.5%) 2703 (1.4%) 1741 (1.6%) 6545 (1.5%)

South Asian 2830 (2.0%) 3965 (2.1%) 1869 (1.8%) 8664 (2.0%)

Black 1327 (0.9%) 2905 (1.5%) 2813 (2.6%) 7045 (1.6%)

Chinese 871 (0.6%) 416 (0.2%) 81 (0.1%) 1368 (0.3%)

Height (m), mean (SD) 1.68 (0.08) 1.69 (0.09) 1.68 (0.09) 1.69 (0.09)

Weight (kg), mean (SD) 64.7 (8.47) 78.6 (9.63) 95.9 (14.3) 78.2 (15.8)

Waist circumference (cm), mean (SD) 78.6 (8.10) 91.0 (8.36) 105 (11.0) 90.3 (13.3)

Body mass index (kg/m2), mean (SD) 22.9 (1.53) 27.3 (1.40) 33.9 (3.83) 27.4 (4.71)

Smoking

Never 85,608 (59.7%) 101,285 (54.0%) 54,809 (51.5%) 241,702 (55.3%)

Previous 41,891 (29.2%) 67,116 (35.8%) 41,239 (38.8%) 150,246 (34.4%)

Current 15,961 (11.1%) 19,162 (10.2%) 10,322 (9.7%) 45,445 (10.4%)

Alcohol intake

Daily or almost daily 32,389 (22.6%) 40,452 (21.6%) 16,463 (15.5%) 89,304 (20.4%)

3–4 times a week 35,702 (24.9%) 46,235 (24.7%) 20,550 (19.3%) 10,2487 (23.4%)

Once or twice a week 36,313 (25.3%) 49,273 (26.3%) 28,077 (26.4%) 113,663 (26.0%)

1–3 times a month 14,853 (10.4%) 19,717 (10.5%) 14,346 (13.5%) 48,916 (11.2%)

Special occasions only 14,027 (9.8%) 18,826 (10.0%) 16,405 (15.4%) 49,258 (11.3%)

Never 10,176 (7.1%) 13,060 (7.0%) 10,529 (9.9%) 33,765 (7.7%)

Fruit and vegetable intake (portion/day), mean (SD) 2.01 (0.825) 1.95 (0.827) 1.94 (0.832) 1.97 (0.828)

Red meat (portion/week), mean (SD) 1.93 (1.38) 2.14 (1.42) 2.28 (1.53) 2.11 (1.44)

Processed meat (portion/week), mean (SD) 1.69 (1.08) 1.92 (1.04) 2.03 (1.04) 1.87 (1.06)

Oily fish (portion/week), mean (SD) 1.65 (0.919) 1.65 (0.921) 1.59 (0.946) 1.64 (0.927)

Sedentary time (hours/day), mean (SD) 4.48 (2.03) 5.12 (2.22) 5.64 (2.51) 5.03 (2.28)

Physical activity (hours/day), mean (SD) 1.62 (1.44) 1.76 (1.58) 2.22 (2.00) 1.83 (1.67)

Diabetes at baseline 2398 (1.7%) 7325 (3.9%) 11,485 (10.8%) 21,208 (4.8%)

Hypertension at baseline 20,636 (14.4%) 48,570 (25.9%) 44,758 (42.1%) 11,3964 (26.1%)

Data are presented as numbers (percentages) unless stated otherwise. Participants classified as underweight (BMI < 18.5 kg/m2 were excluded from the
analyses (n = 2629)
SD standard deviation, BMI body mass index
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previously [27]. These were then used to calculate confi-
dence intervals and P values using normal approximation.
Competing risk due to non-cancer mortality was han-

dled using a cause-specific model [28]. Participants who
died due to non-cancer causes were marked as censored
at their date of death. This approach was used instead of
the sub distribution proportional hazards model because
there is no evidence that the competing events influence
the risk of cancer events, and because the current study
aims to investigate associations rather than absolute risk.
Finally, because of potentially inflated type I errors due

to multiple tests, all analyses were corrected for multiple
testing using Holm’s method [29], which performed
similarly to Bonferroni’s method while retaining higher
statistical power [30]. The multiple testing corrected P
value are denoted as Padj for P value for testing overall
significance against no association, and Pnonlinear for P
value testing non-linearity.
All analyses were adjusted for age, sex, ethnicity,

deprivation, education, smoking, alcohol consumption,

intakes of fruit and vegetables, red and processed
meat, oily fish, physical activity, and sedentary behav-
iours. Additionally, women-related cancer was further
adjusted for hormonal replacement, age at menarche,
and age at first and last live birth. Prostate cancer
was additionally adjusted for family history of prostate
cancer, and melanoma was further adjusted for sun
exposure. All analyses were performed using R Statis-
tical Software, version 3.6.2, with the package survival
and pifpaf.

Results
This study included 437,393 participants who were
followed up for 8.8 years (interquartile range (IQR) 7.9
to 9.6) for cancer incidence and 9.3 (IQR 8.6 to 9.9) for
cancer mortality, after excluding the 2-year landmark
analysis. Over this period, 47,882 incident cancer cases
and 11,265 cancer deaths occurred (Additional file 1:
Table S1 and S2). The characteristics of participants
stratified by BMI categories are shown in Table 1. In

Fig. 1 Association of adiposity markers with overall, liver, pancreatic, and colorectal cancer incidence. Penalised splines were used to present the
association between adiposity markers and cancer outcomes. The adiposity markers were sex-standardised to 1-SD increment. Analyses were
adjusted for age, sex and ethnicity, education, deprivation, smoking, dietary intake (alcohol, fruits and vegetables, red and processed meat, and
oily fish), physical activity and sedentary behaviour. BMI, body mass index; BF%, body fat percentage; WHR, waist-hip ratio; WHtR, waist-height
ratio; HC, hip circumference; HR, hazard ratio. Shaded areas represent 95% confidence intervals. All P values were corrected for multiple testing by
using the Holm’s method. Participants classified as underweight (BMI < 18.5 kg/m2 were excluded from the analyses (n = 2629)
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summary, 53.8% of the study population were women,
94.6% were of white European background. The mean
population age was 56.3 years, 55.3% of subjects had
never smoked, and 10.4% were current smokers.
Figure 1 shows the association of six adiposity markers

with overall, liver, and colorectal cancer incidence. Al-
though there was no evidence against linear associations
with these cancer sites for all adiposity markers, the
magnitude of association was higher for liver cancer in-
cidence (HR ranging from 1.19 to 1.33 per 1-SD higher
adiposity) compared with colorectal cancer (HR ranging
from 1.07 to 1.13 per 1-SD higher adiposity), as shown
in Additional file 1: Table S1. Similar results were found
for overall, liver, pancreatic, and colorectal cancer mor-
tality as shown in Additional file 1: Table S2. However,
the association for WC and HC with colorectal cancer
mortality was not significant (Additional file 1: Figure
S2). Although a similar shape of association was ob-
served for risk of pancreatic cancer incidence across all
adiposity markers, only BMI was significantly associated

with a higher risk after adjusting for multiple testing
(Fig. 1). Similar results were observed for mortality from
pancreatic cancer (Additional file 1: Figure S2). When
the analyses were performed by segments of the digest-
ive tract, distal, proximal, and colon cancer incidence
were linearly associated with a higher risk across all adi-
posity markers (Additional file 1: Figure S3), but these
associations were not observed for mortality (Additional
file 1: Table S1 and Figure S4).
The association of adiposity markers with gallbladder and

stomach (cardia and non-cardia) cancer incidence is shown
in Fig. 2. There was no evidence of non-linear associations
for gallbladder cancer across all six adiposity markers (HR
varied from 1.28 to 1.50 per 1-SD higher adiposity). For
stomach cancer incidence, a linear association was observed
across all adiposity markers (HR ranged from 1.14 to 1.24
per 1-SD higher adiposity). However, when the analyses were
stratified by stomach cardia and non-cardia, only stomach
cardia was linearly associated with all adiposity markers (HR
varied from 1.25 to 1.35 per 1-SD higher adiposity)

Fig. 2 Association of adiposity markers with gallbladder and stomach cancer incidence. Penalised splines were used to present the association
between adiposity markers and cancer outcomes. The adiposity markers were sex-standardised to 1-SD increment. Analyses were adjusted for
age, sex and ethnicity, education, deprivation, smoking, dietary intake (alcohol, fruits and vegetables, red and processed meat, and oily fish),
physical activity and sedentary behaviour. BMI, body mass index; BF%, body fat percentage; WHR, waist-hip ratio; WHtR, waist-height ratio; HC, hip
circumference; HR, hazard ratio. Shaded areas represent 95% confidence intervals. All P values were corrected for multiple testing by using the
Holm’s method. Participants classified as underweight (BMI < 18.5 kg/m2 were excluded from the analyses (n = 2629)
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(Additional file 1: Table S1). Similar patterns of asso-
ciations were observed for mortality from gallbladder,
stomach, and stomach cardia cancer (Additional file
1: Figure S5).
The associations between adiposity and respiratory-

related cancers in never smokers are shown in Fig. 3. Al-
though similar shaped associations were observed for
oesophageal cancer incidence across all adiposity
markers, only WHtR was significant (HR ranged from
1.19 to 1.26 per 1-SD higher adiposity) (Additional file 1:
Table S1). Similar associations were observed for
oesophageal cancer mortality (Additional file 1: Figure
S6). No associations were observed for upper oesophageal,
oral, and lung cancer incidence and mortality across any
of the adiposity markers.
Lymphatic cancer was linearly associated with BMI,

WC, and HC, for incidence (HR ranged from 1.06 to
1.08 per 1-SD higher adiposity, Additional file 1: Table
S1). However, no association were observed for leukae-
mia, non-Hodgkin and myeloma cancer incidence and

mortality across any of the adiposity markers (Fig. 4 and
Additional file 1: Figure S7).
For sex-specific cancers, we observed a steeper lin-

ear association for uterine (HR ranged from 1.26 to
1.70) and endometrial (HR ranged from 1.29 to 1.78)
cancer incidence (Fig. 5 and Additional file 1: Table
S1). The strongest magnitude of association for both
uterine and endometrial cancer incidence was ob-
served for BF% whereas WHR shows the smallest
magnitude of association of any adiposity marker
(Additional file 1: Table S1). Although similar associa-
tions were observed for uterine and endometrial can-
cer mortality across all adiposity markers, mortality
from cervical cancer showed a borderline U-shaped
association with BMI, WC, BF%, WHtR, and HC
(Additional file 1: Figure S9 and Table S2). No associ-
ation was found between adiposity and ovarian cancer
incidence and mortality. For breast cancer incidence,
a linear association was observed for BMI, BF%,
WHtR, and WHR; however, a slight departure from

Fig. 3 Association of adiposity markers with oesophageal, oral, and lung cancer incidence in never smoker. Penalised splines were used to
present the association between adiposity markers and cancer outcomes. The adiposity markers were sex-standardised to 1-SD increment.
Analyses were adjusted for age, sex and ethnicity, education, deprivation, dietary intake (alcohol, fruits and vegetables, red and processed meat,
and oily fish), physical activity and sedentary behaviour. BMI, body mass index; BF%, body fat percentage; WHR, waist-hip ratio; WHtR, waist-height
ratio; HC, hip circumference; HR, hazard ratio. Shaded areas represent 95% confidence intervals. All P values were corrected for multiple testing by
using the Holm’s method. Participants classified as underweight (BMI < 18.5 kg/m2 were excluded from the analyses (n = 2629)
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linearity was observed for WC and HC (Fig. 6). When
the analyses were stratified into pre and post meno-
pause, the adiposity markers were associated with
breast cancer incidence in postmenopausal women
only (Fig. 6). No associations were observed for breast
cancer mortality (Additional file 1: Figure S10). The
associations for women-related cancers remained
largely unchanged when the analyses were further ad-
justed for use of hormonal replacement therapy, age
at menarche, and age at first and date of last live
birth (Additional file 1: Figure S8, S9 and S11). For
men, only prostate cancer incidence, but not mortal-
ity, was inversely associated with WC and HC (Fig. 6
and Additional file 1: Figure S10).
Kidney cancer incidence and mortality were linearly asso-

ciated with all adiposity markers, with HR ranging from
1.18 to 1.27 per 1-SD higher adiposity (Fig. 7 and
Additional file 1: Figure S12 and Table S1). For bladder
cancer, we observed a higher risk of cancer incidence only

at the higher end of the BMI and WHtR ranges (Fig. 7).
However, these associations were not observed for bladder
cancer mortality (Additional file 1: Figure S12). For melan-
oma cancer incidence, only WC and HC were linearly
associated with a higher risk (Fig. 7).
Our PAF analyses show that the proportions of cancer

attributable to BMI vary considerably by cancer site.
Endometrial, uterine, and gallbladder were the top three
cancers for which obesity accounted for 43.8%, 39.2%,
and 29.9% incident cases and 63.8%, 46.1%, and 39.8% of
deaths, respectively (Fig. 8). When the predictive ability
of BMI was compared with the other adiposity markers
using C-index, there were no evidence of a significant
improvement in C-indices from models using WC, BF%,
WHR, WHtR, and HC over the model with BMI
(Additional file 1: Table S3). The associations for overall,
liver, kidney, stomach, pancreatic, bladder, gallbladder,
colorectal cancer, endometrium, uterine, and breast
(postmenopausal in women) cancer remained significant

Fig. 4 Association of adiposity markers with lymphatic cancer incidence. Penalised splines were used to present the association between
adiposity markers and cancer outcomes. The adiposity markers were sex-standardised to 1-SD increment. Analyses were adjusted for age, sex and
ethnicity, education, deprivation, smoking, dietary intake (alcohol, fruits and vegetables, red and processed meat, and oily fish), physical activity
and sedentary behaviour. BMI, body mass index; BF%, body fat percentage; WHR, waist-hip ratio; WHtR, waist-height ratio; HC, hip circumference;
HR, hazard ratio. Shaded areas represent 95% confidence intervals. All P values were corrected for multiple testing by using the
Holm’s method. Participants classified as underweight (BMI < 18.5 kg/m2 were excluded from the analyses (n = 2629)
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and largely unchanged when the analyses were adjusted
for competing events (Additional file 1: Table S4).
When we conducted the analyses including under-

weight people, the association between adiposity and
cancer remained linear (Additional file 1: Figure S13
and Figure S14). Similar results were found for cancer
incidence and mortality when we added height as a
covariate; some associations were slightly stronger as
was the association between BMI and overall cancer
incidence and mortality; (Additional file 1: Table S5
and Table S6).

Discussion
This study provides important evidence regarding
the risk of 24 cancer sites associated with multiple
adiposity markers. Higher levels of adiposity, regard-
less of the adiposity marker used, were associated in
a linear manner with a higher incidence of liver,
kidney, stomach, pancreatic, bladder, gallbladder,
colorectal cancer, endometrial, uterine, and breast

(in postmenopausal women) cancer. If the associa-
tions observed were causal, reducing the BMI of
obese individuals to the normal range could prevent
43.8%, 39.2%, and 29.9% of incidence and 63.8%,
46.1%, and 39.8% deaths from endometrial, uterine,
and gallbladder cancers, respectively.
Our findings corroborate previous evidence, in-

cluding the WCRF obesity and cancer 2018 report
and meta-analyses from protective cohort studies
[31–34], that adult adiposity (assessed using BMI) is
associated with higher risk of oesophageal, pancre-
atic, liver, colorectal, postmenopausal breast, and
endometrial cancers. Furthermore, our findings add
strength to previously weak evidence of links be-
tween BMI and stomach cancer risk [35]. On the
other hand, our findings did not find evidence for an
association between BMI (and any other markers of
adiposity) and ovarian cancer as reported by others
[36], which could be attributed to our comprehen-
sive confounder adjustments. We also found inverse

Fig. 5 Association of adiposity markers with women-specific cancer incidence. Penalised splines were used to present the association between
adiposity markers and cancer outcomes. The adiposity markers were sex-standardised to 1-SD increment. Analyses were adjusted for age, sex and
ethnicity, education, deprivation, smoking, dietary intake (alcohol, fruits and vegetables, red and processed meat, and oily fish), physical activity
and sedentary behaviour. BMI, body mass index; BF%, body fat percentage; WHR, waist ratio; WHtR, waist-height ratio; HC, hip circumference; HR,
hazard ratio. Shaded areas represent 95% confidence intervals. All P values were corrected for multiple testing by using the Holm’s method.
Participants classified as underweight (BMI < 18.5 kg/m2 were excluded from the analyses (n = 2629)
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associations between five adiposity markers and risk
of prostate cancer. Although excess adiposity has
been associated with multiple cancers, evidence of its
association with prostate cancer has been restricted to
advanced prostate cancer only [37, 38]. However, a
recent systematic review of data from 78 studies, in-
cluding a meta-analysis of 67 studies, reported no as-
sociation between BMI and prostate cancer [37, 38].
These authors also concluded that previously reported
inverse associations between BMI and prostate cancer
may be due to incomplete diagnosis (not all men be-
ing biopsied). The assumption that men who have
not been tested for prostate do not have prostate can-
cer may lead to bias and inverse associations [37].
BMI and WHtR were positively associated with blad-
der cancer, in concordance with the meta-analysis of
15 cohort studies, published by Sun et al., which
showed a linear association between adiposity and
bladder cancer [39].

We did not find a significant association between
adiposity and lung cancer in never smokers. These
disagree with a recent meta-analysis with considerable
statistical power, which pooled data from 29 observa-
tional studies, including 15 million never smokers,
where BMI was inversely associated with lung cancer
[40].
There is convincing evidence [41] that greater adi-

posity is associated with increased risk of colorectal
cancer, assessed mainly as BMI in prospective cohort
studies [7, 35, 41–44]. Our study corroborates these
findings and adds novel evidence that other adiposity
markers are also consistently associated with an in-
creased risk of colorectal cancer. We also observed
that all adiposity markers were positively associated with
higher liver cancer risk with broadly consistent effect
sizes. Furthermore, we found that all adiposity markers
were associated with an increased risk of breast cancer.
But the association appeared to occur in postmenopausal

Fig. 6 Association of adiposity markers with prostate, testicular cancer in men and breast cancer (overall, pre and post menopausal) incidence. Penalised
splines were used to present the association between adiposity markers and cancer outcomes. The adiposity markers were sex-standardised to 1-SD
increment. Analyses were adjusted for age, sex and ethnicity, education, deprivation, smoking, dietary intake (alcohol, fruits and vegetables, red and
processed meat, and oily fish), physical activity and sedentary behaviour. BMI, body mass index; BF%, body fat percentage; WHR, waist-hip ratio; WHtR,
waist-height ratio; HC, hip circumference; HR, hazard ratio. Shaded areas represent 95% confidence intervals. All P values were corrected for multiple
testing by using the Holm’s method. Participants classified as underweight (BMI < 18.5 kg/m2 were excluded from the analyses (n = 2629)
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women only. These findings confirm previous evidence
from prospective cohort studies [33, 45, 46].

Implications of findings
The findings of this study have important clinical implica-
tions. First, it provides evidence that central (waist and hip
circumference) and overall adiposity (BMI and BF%)
markers produced similar relative risk estimates. Therefore,
the use of BMI, a simple and low-cost measurement, is ad-
equate for clinical screening in terms of cancer risk, and
there is no advantage in using more complicated or more
expensive measures such as WC or BF%. We also found
that a significant proportion of cancers could be prevented
by reducing obesity, especially liver and kidney cancer in
men and endometrial and uterine cancer in women.

Strengths and Limitations
UK Biobank is not a representative sample of the UK
older adult population, so we should be cautious in
generalising summary statistics to the general popula-
tion. However, relative risks derived from UK Biobank

are consistent with more representative population
cohorts [47]. The adiposity exposures used in the
study were measured by trained staff using standar-
dised protocols; therefore, this minimises the chance
of measurement error and misclassification. However,
there are several limitations that should be taken into
account. Reverse causation is a concern in prospective
cohort studies investigating the association between
adiposity and cancer. However, to minimise the effect
of reverse causation in our study, we excluded all
participants with cancers diagnosed within the first
2 years of follow-up. Residual confounding is also
possible even though we have adopted a comprehen-
sive adjustment scheme. In addition, although we
used data from hospital admission and deaths regis-
ters, available in the UK, we cannot exclude misclassi-
fication for cancer-specific sites or uncommon
cancers. Although UK Biobank is a large observational
study, some cancers had limited numbers of events,
which limited our power to identify some associations
with adiposity markers.

Fig. 7 Association of adiposity markers with brain, melanoma, thyroid, bladder, and kidney cancer incidence. Penalised splines were used to present
the association between adiposity markers and cancer outcomes. The adiposity markers were sex-standardised to 1-SD increment. Analyses were
adjusted for age, sex and ethnicity, education, deprivation, smoking, dietary intake (alcohol, fruits and vegetables, red and processed meat, and oily
fish), physical activity and sedentary behaviour. BMI, body mass index; BF%, body fat percentage; WHR, waist-hip ratio; WHtR, waist-height ratio; HC, hip
circumference; HR, hazard ratio. Shaded areas represent 95% confidence intervals. All P values were corrected for multiple testing by using the Holm’s
method. Participants classified as underweight (BMI < 18.5 kg/m2 were excluded from the analyses (n = 2629)
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Conclusion
Adiposity, regardless of the marker used, was associated
with an increased risk of 10 cancer sites. Furthermore,
the associations were mostly linear among all adiposity
markers. We found no evidence that the use of other
adiposity markers, such as central adiposity or body fat,
improves the prediction ability for cancer risk beyond
the risk attributable to BMI.
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