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Abstract: Wireless vehicular communications are a promising technology. Most applications related
to vehicular communications aim to improve road safety and have special requirements concerning
latency and reliability. The traditional channel estimation techniques used in the IEEE 802.11 standard
do not properly perform over vehicular channels. This is because vehicular communications are
subject to non-stationary, time-varying, frequency-selective wireless channels. Therefore, the main
goal of this work is the introduction of a new channel estimation and equalization technique based on
a Semi-supervised Extreme Learning Machine (SS-ELM) in order to address the harsh characteristics
of the vehicular channel and improve the performance of the communication link. The performance
of the proposed technique is compared with traditional estimators, as well as state-of-the-art machine-
learning-based algorithms over an urban scenario setup in terms of bit error rate. The proposed
SS-ELM scheme outperformed the extreme learning machine and the fully complex extreme learning
machine algorithms for the evaluated scenarios. Compared to traditional techniques, the proposed
SS-ELM scheme has a very similar performance. It is also observed that, although the SS-ELM scheme
requires the largest operation time among the evaluated techniques, its execution time is still far
away from the latency requirements specified by the standard for safety applications.

Keywords: channel estimation and equalizer; extreme learning machine; IEEE 802.11p amendment;
semi-supervised learning; vehicular communications

1. Introduction

Vehicular communications are a promising technology for deploying next-generation
intelligent transportation systems [1,2]. Vehicular Communication Systems (VCSs) rely on
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications subject to a
time-varying, frequency-selective wireless channel for enabling road safety and traffic effi-
ciency applications. Important efforts are being made towards the identification, definition,
and characterization of applications and use cases for VCSs. For instance, the European
Telecommunication Standards Institute (ETSI) has defined a basic set of vehicular appli-
cations to be considered as a reference for deployment and standardization [3]. ETSI has
also specified the operation mode and communication requirements of vehicular applica-
tions, such as pre-crash sensing, lane change warning, and cooperative forward-collision
warning [4,5]. These safety applications aim to decrease the probability of an accident by
using early warnings, or even by taking control of the vehicle. On the contrary, vehicular
applications such as adaptive cruise control and intersection management aim to decrease
road congestion and improve traffic efficiency [3]. A challenge in VCSs is in satisfying the
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strict communication requirements of safety applications, which are vital for preserving
human lives. Road safety applications have specified requirements concerning reliability
and latency [4,5]; therefore, it is necessary for the the underlying structure of the vehicle
network to guarantee these standards.

In VCSs, the particular propagation conditions of the vehicular environment make
channel estimation and equalization a relevant challenge, especially because the high veloc-
ity of vehicles leads to variations in time and frequency [6]. In order to adapt to the harsh
vehicular channel, the effective data rates of the IEEE 802.11p amendment were reduced
to half in comparison to IEEE 802.11-based standards [7]. Traditional IEEE 802.11-based
standards are the basis of Wireless Fidelity (WiFi) systems, which are commonly used in
indoor scenarios and characterized by their low mobility [6,7]. Despite the particular prop-
agation conditions of the vehicular environment and the high mobility of the vehicles, no
modifications were made to the IEEE 802.11p amendment regarding the channel estimation
techniques adopted by traditional IEEE 802.11-based standards. A well-known channel
estimation technique is the Least Squares (LS), which estimates the impulse response of the
channel at the start of a frame [8]. LS works well for typical indoor Orthogonal Frequency
Division Multiplexing (OFDM) systems; however, its performance is degraded in vehicular
environments because the channel changes rapidly over time, which is more critical for
higher velocities [6]. Another channel estimation technique corresponds to the Spectral
Temporal Averaging (STA) [9], which uses time and frequency dependencies to prop-
erly perform the estimation stage. STA unfortunately suffers a great performance impact
in non Wide-Sense Stationary Uncorrelated Scattering (WSSUS) channels. Unlike STA,
the Constructed Data Pilots (CDP) technique [8] does not suffer significant performance
degradation on non-WSSUS channels, but it has poor performance at low Signal to Noise
Ratios (SNRs).

Machine Learning (ML) provides a versatile set of tools to address the challenges
of vehicular communications due to its ability to exploit available data and perform
difficult tasks; for example, to predict channel parameters, to augment network throughput,
and to help with congestion control or even autonomous driving [10]. There are several
proposals [11–13] that use ML schemes to perform channel estimation and equalization,
but these proposals do not consider the 802.11p amendment. In other words, these studies
can not be extrapolated for VCSs because they do not consider the characteristics of the non-
WSSUS mobile-to-mobile channel or the particular frame structure of the communication
packet; therefore, the channel estimation must be performed differently to the 802.11p
amendment mandates. In [11], Ye and Li used a Deep Learning (DL) approach characterized
by off-line training to perform channel equalization and estimation for an OFDM-based
system, by showing a performance improvement over the LS and the Minimum Mean-
Square Error (MMSE) schemes. The work presented in [11] shows that DL has the potential
to improve the estimation equalization of communication channel in OFDM-based schemes.
However, when considering that V2V safety applications have latency limitations, and since
the channel has rapid variations in the time and frequency domain, an off-line approach
should be discarded, as the channel models used in the training stage might differ from
the actual channel. In [12], Sattiraju et al. proposed an artificial neural network (ANN)
scheme based on a convolutional neural network to perform channel estimation on a
Cellular Vehicle-to-Everything (C-V2X) communication system. This technique performs
well but it again requires an off-line learning stage. In [13], Liu et al. introduces the use of a
fully Complex Extreme Learning Machine (C-ELM) neural network to perform channel
estimation and equalization on OFDM signals, where an exponential channel model with
eight stochastic fading delay paths based on the IEEE 802.11g standard (mainly, a frequency-
selective channel) is considered. The results show that the proposed C-ELM algorithm
outperforms other state-of-the-art techniques, such as MMSE, LS, and a deep neural
network-based scheme, and has a better generalization ability by considering different
subcarrier modulation formats and numbers of subcarriers. It is worth noting that only the
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hyper-parameters (mapping function and number of hidden neurons) of the C-ELM are
reported; no theoretical or simulation justifications are presented.

In this work, as an initial exploration, we propose the use of an Extreme Learning
Machine (ELM) channel estimator and equalizer technique, which is characterized by
Semi-Supervised (SS) learning for vehicular communications. The proposed algorithm
considers the special propagation conditions in the time and frequency domains of vehic-
ular communication channels. The main contributions of this work can be summarized
as follows:

• We propose a regularized ELM subject to SS learning as channel estimator and equal-
izer to enhance the performance of a representative IEEE 802.11p OFDM-based system
in terms of Bit Error Rate (BER). To this end, we add a novel parameter denoted
by δ in the Semi-supervised Extreme Learning Machine (SS-ELM) to address the
time-domain fluctuations of the channel. Furthermore, a frequency-domain local-
ized mapping is used to properly recover the OFDM signal, namely to address the
frequency-selective channel;

• Taking the simulation framework of the evaluated system into account, we compute
the sub-optimal SS-ELM hyper-parameters to diminish BER via extensive simulations.
We also show that a supervised ELM does not improve the BER performance of a
vehicular IEEE 802.11p system;

• We compare the proposed technique with current state-of-the-art machine-learning-
based channel estimation schemes as well as traditional techniques in an urban
environment for several values of Energy per Bit to Noise Power Spectral Density
Ratios (Eb/N0). The addressed techniques are also contrasted in terms of the required
processing time.

The remainder of this article is organized as follows: Section 2 depicts the foundations
and background of this work, namely the physical layer of the IEEE 802.11p amendment,
details of the vehicular channel model used in this work, and the ELM neural network
subject to supervised and SS learning. Section 3 carefully presents the novel and improved
SS-ELM algorithm used to estimate and equalize the communication channel of an IEEE
802.11p-based V2V system. Section 4 depicts the evaluation scenario, describes the opti-
mization process of the SS-ELM parameters, and compares the BER and execution time
of the proposed scheme with other state-of-the art and traditional IEEE 802.11 channel
estimation techniques. Finally, Section 5 contains concluding remarks.

2. Background
2.1. The IEEE 802.11p Standard

IEEE 802.11p is an amendment of the IEEE 802.11a standard [7]. Its purpose is to
adapt existing indoor wireless communication systems to vehicular environments, where
it is important to address the high mobility of the users. IEEE 802.11p uses OFDM as
modulation format in the Physical Layer (PHY) and it operates at the 5.9 GHz radio
frequency band. The transmitter sends several parallel data streams through orthogonal
subcarriers, by improving the spectral efficiency and mitigating the severity of multi-path
fading [7].

Table 1 shows the most important parameters defined on the IEEE 802.11p amendment.
In general, the time domain parameters of this amendment are two times larger with respect
to the IEEE 802.11a standard. For instance, the bandwidth is reduced from 20 MHz to
10 MHz, and the subcarrier frequency spacing is reduced by a factor of 2. As mentioned,
these changes are made in order to increase the reliability of the transmission by increasing
the duration of the OFDM symbols.
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Table 1. IEEE 802.11p system parameters for a 10 MHz channel.

Parameter Value
Number of data subcarriers (NSD) 48
Number of pilot subcarriers (NSP) 4
Number of subcarriers total (NST) 52
Subcarrier frequency spacing (∆ f ) 0.15625 MHz
IFFT/FFT periods (TFFT) 6.4 µs (1/∆ f )
PHY preamble duration (TPREAMBLE) 32 µs
Duration of the
Signal BPSK-OFDM symbol (TSIGNAL) 8 µs

Training symbol guard interval duration (TGI) 3.2 µs
Symbol interval (Tsym) 8 µs
Short training sequence duration (TSHORT) 16 µs
Long training sequence duration (TLONG) 16 µs

Figures 1 and 2 depict a general IEEE 802.11p transceiver. The transceiver is based
on traditional OFDM architectures. For simplicity, the block diagrams of the transceiver
are depicted in its base-band representation. At the transmitter side, the data are mod-
ulated and then passed through an Inverse Fast Fourier Transform (IFFT) block to get
orthogonal signals. Afterwards, a Cyclic Prefix (CP) is added to diminish inter-symbol
interference, and finally a temporal preamble is inserted [7]. The purpose of this pream-
ble is to synchronize the signal (short training symbols) and estimate the channel (long
training symbols). Nevertheless, the structure of the preamble is detailed at the end of this
Subsection. Figure 2 shows that the transmitted signal is distorted by the wireless channel,
which is time-varying and frequency-selective for V2V communications (refer to the next
Section), and by Gaussian additive noise, which is typical to all communication system.
At the receiver side, the first signal processing task consists of removing the CP, and then
applying a Fast Fourier Transform (FFT) to the signal. Then, the channel is estimated,
and the signal is equalized by exploiting the subcarriers used as pilot signals. Finally,
the signal is demodulated, and the data can be recovered.

Figure 1. Block diagram of the OFDM transmitter.

Figure 2. Block diagram of the OFDM receiver.

The signal received after the FFT operation is given as follows [6]

Yi(k) = Hi(k)Xi(k) + Ni(k), i = {1, ..., Nsymbol}, k = {1, ..., M}, (1)
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where i corresponds to the respective OFDM symbol, Nsymbol denotes the total number
of OFDM symbols, k is the corresponding subcarrier, and M represents the total number
of subcarriers. Furthermore, Xi(k) represents the transmitted signal that is obtained after
the modulation in the transmitter block diagram, Yi(k) is the received signal after the FFT
module at the receiver side, Hi(k) is the Channel Frequency Response (CFR), and Ni(k) is
the Additive White Gaussian Noise (AWGN).

Based on [6], Figure 3 depicts the subcarrier distribution of the IEEE 802.11p standard.
As mentioned previously, the bandwidth of the OFDM signal is given by 10 MHz and
the radio frequency matches to 5.9 GHz. The data subcarriers are shown in green, while
the pilots are shown in red and are uniformly distributed between the data subcarriers.
Additionally, the null and Direct Current (DC) subcarriers are represented by black and
blue colors, respectively. For the sake of simplicity, in our work, null and DC subcarriers
are discarded.

Figure 3. IEEE 802.11p subcarrier distribution.

In Figure 4, the IEEE 802.11p packet preamble structure is illustrated. It can be seen
that the preamble has 10 short training symbols of 1.6 µs located at the beginning of the
packet. These symbols are used to perform fine synchronization. In this work, the use
of these symbols is discarded, since we assume a perfect synchronization to focus on the
estimation/equalization issue. Furthermore, two long training symbols of 6.4 µs can be
distinguished, which are used to perform the channel estimation. Since these symbols are
found for each subcarrier of the OFDM signal, they are better suited to calculating the
channel estimation than the pilot signals [7]. Note that a guard interval to avoid out-of-band
interference also exists, whose duration is 3.2 µs.

Figure 4. IEEE 802.11p packet preamble structure.

2.2. Single Ring Geometrical Scattering Channel Model

To test the channel estimation techniques, we need to define how to represent the
communication channel. This representation needs to take most critical physical effects of
the vehicular environment into consideration, and it also needs to be as close to reality as
possible in order to properly evaluate the system performance.

Considering that the vehicular channel does not fulfill the WSSUS condition, the chan-
nel representation proposed in [14–16] is used in this work. The channel introduced
in [14–16] is a statistical geometrical model for mobile-to-mobile systems. The scenario has
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a mobile transmitter with variable velocity and acceleration, as well as a receptor moving
at a variable velocity and acceleration. The receiver is surrounded by interfering objects
positioned in a circle whose center is the receptor itself. Therefore, the model depicts a
realistic representation of a mobile to mobile system scenario. Furthermore, the model
proposed in [14–16] is physically complete but mathematically simple in comparison with
other non-WSSUS geometry-based statistical channel models.

In the model presented in Figure 5, VT corresponds to the vector describing the velocity
of the transmitter, VR is the vector describing the velocity of the receptor, aT represents
the vector describing the acceleration of the transmitter, aR denotes the vector describing
the acceleration of the receptor, d comes to be the radius of the ring, and l-th > IO
corresponds to the l-th interfering object. As a result, the channel transfer function is given
as follows [14–16],

h(τ, t) =
L
∑
l=1

glexp{j[θl − 2π fcτl(t)]}δ[t− τl(t)]ΩT0(t− t0), (2)

where fc corresponds to the central frequency of the OFDM signal, whereas gl , θl , and αP
l

are random variables. Specifically, gl is a complex attenuation factor and follows a uniform

distribution between [0,
√

1
2L ], θl is the phase shift that follows a uniform distribution

between [0, 2π], and α
p
l is the angle between the l-th > IO and the transmitter or receiver

and follows a uniform distribution between [0, 2π]. However, ΩT0(t− t0) is a windowing
function equal to 1 if t ∈ [t0, t0 + T0] and 0 otherwise, where t0 is the reference point where
the observation begins and T0 is the length of the observation window. This windowing
function is used in order to ignore the large scale effects. The time-varying propagation
delays of the multipath components are given as [14–16],

τl(t) =
dT

l + dR
l

c
− t

fc

[
f S
l +

ḟ S
l (t)
2

]
, (3)

where f S
l and ḟ S

l are the Doppler frequency shift caused by the vehicles’ velocity and
acceleration, respectively, and are defined in the following form,

f S
l = f T

maxcos(αT
l − γT) + f R

maxcos(αR
l − γR), (4)

ḟ S
l (t) = ḟ T

max(t)cos(αT
l − βT) + ḟ R

max(t)cos(αR
l − βR), (5)

where dT
l , dR

l are the distances of the transmitter and the receiver to the l − th IO, c is
the speed of light, whereas γT and γR are the velocity vector angles of the transmitter
and receiver velocity vector, respectively. At the same time, βT and βR are the acceler-
ation vector angles of the transmitter and receiver, respectively. Finally, f P

max = VP/λc
and ḟ P

max(t) = aP(t)/λc characterize the maximum Doppler shift caused by the velocity
and acceleration of the mobiles, respectively, where λc stands for the wavelength of the
transmitted signal and P must be replaced by R or T, which describes the receptor or the
transmitter, respectively [6,17].
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Figure 5. Single ring geometrical channel scattering model. The vehicle on the left side is the transmitter, while the vehicle
on the right side represents the receiver.

2.3. Extreme Learning Machine

The ELM is a learning algorithm for feed-forward artificial neural networks character-
ized by a single hidden layer [18,19]. The ELM tends to minimize the training error thanks
to the adoption of the smallest norm of the output weights. In addition, the ELM has a fast
learning speed, as the only parameters that need to be optimized are the output weights
between the hidden neurons and the output layer. The computational time required for
training can be considered negligible in comparison with traditional feed-forward neural
networks and support vector machines [20].

Generally, for a given training set with Nm instances {U, T} = {ui, ti}Nm
i=1, where

ui = [ui1, ui2, ..., uiDi ] ∈ RDi is an input sample and ti = [ti1, ti2, ..., tiDo ] ∈ RDo is its
corresponding output (the input dimension Di and output dimension Do are not necessarily
equal), the output of an standard single hidden layer feed forward network can be written
in the following form [18,19],

t̂k =
nh

∑
i=1

βi
ELMG[wi · u(k) + bi], k = {1, Nm}, (6)

where nh is the number of hidden neurons, βi
ELM ∈ R1xD0 is the weight vector connecting

the i-th neuron in the hidden layer with the output neurons, G is the activation function,
wi ∈ RNmx1 is the weight vector describing connections of the i-th hidden neuron with the
input neurons, and bi is the i-th hidden neuron’s threshold. In the ELM algorithm, input
weights wi and bias bi are randomly generated according to a probability distribution and
are related by the inner product operator (·).

The training process of the ANN can be expressed as a linear regression problem for
the ELM algorithm, where a zero training error between the target output and the actual
output (∑Nm

i=1 tk − t̂k) can be determined as follows [18,19]

T = FβELM, (7)

where the output matrix of the hidden layer acquires the form of

F =


G(w1 · u1 + b1) . . . G(wnh · u1 + bnh)

. . .

. G(wi · uj + bi) .

. . .
G(w1 · uNm + b1) . . . G(wnh · uNm + bnh)

. (8)
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The optimal solution to the ELM can be computed as

β∗ELM = F†T, (9)

where F† is the Moore-Penrose generalized inverse of F. If we consider zero training error,
over-fitting could appear into the ELM algorithm. In order to avoid this problem, calcula-
tions are done by minimizing the final weights βELM with the inclusion or a regularization
parameter. In other words, the mean square error is given by

min
βELM ,e

1
2
||βELM||2 +

C
2

Nm

∑
i=1
||ei||2,

s.t f (ui)βELM = tT
i − eT

i , i = 1, ..., Nm, (10)

where f (u) represents an output(row) vector of matrix in expression (8), ei ∈ RDo is
the error vector with respect to the i-th input sample, and C corresponds to the penalty
coefficient, must be any real positive number. Finally, its solution when F has more rows
than columns (nh > Nm), can be written as follows [18,19]

β∗ELM =

(
FT F +

Inh

C

)−1

FTT, (11)

where Inh is an identity matrix with dimension nh. On the other hand, in the case that F
has less rows than columns (nh < NM), the previous solution can be written as follows

β∗ELM = FT
(

FFT +
INm

C

)−1

T, (12)

where INm is an identity matrix with dimension Nm. In summary, the training algorithm of
the ELM is given in Algorithm 1.

Algorithm 1: ELM algorithm.

Inputs: The training set {U, T} = {ui, ti}Nm
i=1

Output: The output weights βELM
1: Randomly generate the real value input weights and bias wi, bi
2: Model the hidden layer neurons using expression (6)
3: Based on expression (8), calculate the output matrix of the hidden layer F of

ELM
4: Determine the output weights

if nh <= Nm then

β∗ELM = (FT F +
Inh
C )−1FTT

else
β∗ELM = FT(FFT +

INm
C )−1T

end

2.4. Semi-Supervised Extreme Learning Machine

In a semi supervised setting, we have few labeled data and plenty of unlabeled data,
which can be used to increase the perform of the system [18]. For this approach, we assume
that the distribution of the label data is similar to the distribution of the unlabeled data
and try to extract that the beneficial information. The SS-ELM algorithm is presented in
Algorithm 2.
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Algorithm 2: SS-ELM algorithm.

Inputs: Labeled data {Ul , Tl} = {ui, ti}l
i=1, where ui = [ui1, ui2, ..., uiDi ] ∈ RDi

and ti = [ti1, ti2, ..., tiDo ] ∈ RDo , and unlabeled data Uµ = {ui}
µ
i=1,

where l and u are the numbers of labeled and unlabeled data, respectively
Output: The output weights βELM
1: Construct the graph Laplacian L from both Ul and Uµ

2: Initiate an ELM network of nh hidden neurons with random input weights and
biases, calculate the output matrix of the hidden neurons F

3: Select the hyper-parameters C and λ
4: Find the output weights
if nh <= Nm then

βELM = (Inh + FTCF + λFT LF)−1FTCT̃, where T̃ ∈ IR(l+µ)xDo is the
augmented training target with its first l rows equal to Tl and the rest equal to
0, C ∈ IR(l+µ)x(l+µ) is a diagonal matrix with [C]ii = C, i = 1, ..., l and the rest
of values equal to 0

else
βELM = FT(Il+µ + CFFT + λLFFT)−1CT̃, where Il+µ is an identity matrix of
dimension l + µ

end

It is important to notice that λ is known as the trade-off parameter, and indicates how
important the unlabeled data are in the training stage. Obviously, if we set this parameter
to zero, then the SS-ELM matches the standard ELM. The Laplacian graph is used to extract
the geometry distribution information contained in the available data. As previously
indicated, one of the assumptions of SS learning is that both labeled data Ul and unlabeled
data Uµ are drawn from the same marginal distribution PU . Another assumption is that
the conditional probabilities of P(t|u1) and P(t|u2) should be similar if the two points
u1 and u2 are close. With these assumptions, the manifold regularization term is usually
minimized with the following function [20]

Lm =
1
2 ∑

i,j
ri,j||P(t|ui)− P(t|uj)||2, (13)

where ri,j is the pair-wise similarity between two inputs and can be computed with the
next expression

ri,j =

{
exp(−||ui − uj||2/2σ2) if ui, uj are neighbors
0 otherwise

, (14)

Expression (13) can be simplified as Lm = Tr(T̂T LT̂), where Tr(·) is the trace of a matrix.
The Laplacian graph can be calculated as L = D− R, where D is a diagonal matrix with its
diagonal elements Dii = ∑

l+µ
j=1 ri,j, and the similarity matrix R = [ri,j]. As mentioned, the SS-

ELM setting incorporates the manifold regularization to incorporate the use of unlabeled
data, thus improving the accuracy of the predictions. The expressions for βELM shown on
Algorithm 2 are obtained when modifying the problem on Equation (10) as follows,

min
β

1
2
||βELM||2 +

1
2

Nm

∑
i=1

Ci||ei||2 +
λ

2
Tr(βT

ELMFT LFβELM),

s.t f (ui)βELM = tT
i − eT

i , i = 1, ..., Nm. (15)

In the context of V2V communications, this algorithm might offer a better performance,
as it could, for example, learn from the time and frequency variations present in the
propagation scenario. Even though it may learn from these variations, other algorithms
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that use these dependencies have a large performance degradation [6,8] in the presence of
rougher propagation scenarios, like the STA algorithm.

3. Proposed SS-ELM Equalizer

Initially, we used the original ELM with supervised learning (as a reference case).
To this end, we performed the training step by employing the two long training symbols
as input training data and by following the steps of the Algorithm 1, then the frame was
equalized by feeding each data subcarrier to the ELM. As any equalizer, this procedure is
done frame by frame. Based on the poor BER resulting from this type of ELM (as will be
depicted in the next Section), for this manuscript, we explored the SS learning paradigm
for the ELM algorithm along with localized mapping. In the following paragraphs, we will
define and explain the proposed SS-ELM algorithm.

The proposed SS-ELM algorithm is based on Algorithm 2 and, as a common machine
learning approach, has two stages: training and testing. The first one consists of the training
phase, in which we use the pilots and the two long training symbols to calculate the internal
parameters of the ELM (βELM). Notice that the weights and biases between the input and
hidden layers are arbitrarily generated (a main characteristic of the ELM algorithm as
mentioned in Section 2.3) based on the uniform distribution on [−1,1] [21,22]. Using these
parameters, we then perform the evaluation phase. Here, we equalize the constellation
symbols and, afterwards, calculate the BER metric by using the standard demodulation.

The time-frequency fluctuations in the channel can be seen in Equations (2) and (3)
where τ(t) represents the general time delay variations. Instead, the several parameters on
Equations (4) and (5) show the frequency oscillations associated with the Doppler effect.
Consequently, if we feed all the data directly to the model, we will not properly address
this problem (as observed in the next Section). Consequently, we perform the training and
equalization by considering the frequency and time domains for the SS-ELM algorithm.

The basic ELM architecture consists of two real inputs R{Yi(k)} and I{Yi(k)}, one for
the real part of the constellation symbol and other for its imaginary part, nh hidden neurons,
and two neurons on the output, one for each part of the constellation symbol. For the sake
of simplicity, we will refer to the inputs as Yi(k) and the outputs as Ŷi(k). First of all, by
considering that the channel changes rapidly in the frequency domain, the information
from the pilot carriers is used in a localized manner, as shown in Figure 6.

Figure 6. Subcarrier distribution slots.

Therefore, four localized equalization processes following the IEEE 802.11p standard
are done at the same time, i.e., one for each pilot subcarrier. We define the slot signal
as follows

Xp
i (k), Yp

i (k) = Xi(k), Yi(k)
p+q
k=p, (16)

where i is the number of OFDM symbol, k denotes the subcarrier number, p represents
the pilot corresponding to the slot being process, and q comes to be the length of the
frequency slot.

With the localized mapping, there are 12 data carriers for each pilot. This number
of data carriers was adopted because it corresponds to the relationship NSD/NSP, where
NSD and NSP are given by the parameters exposed in Table 1. Consequently, we take
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advantage of the frequency dependency of the channel in order to diminish the impact
of the frequency variations in the channel in the system performance, since the term λ in
Equations (4) and (5) is the closest to the pilot subcarrier term. Then, for each slot, the
process is performed symbol by symbol in the time domain by considering the definition
given in Equation (1). This is done in order to track the time fluctuations in the channel.
For illustration purposes, Figure 6 also represents how the subcarriers are distributed for
each slot.

In addition, the block diagram of the equalization process is presented in Figure 7 for
clarification purposes. Obviously, it begins when the FFT module is performed and ends
with the constellation symbols to be demapped. As can be seen, a pre-equalization with
the LS method is done right after the Fourier-based block. The reason behind this stage is
because the channel estimation which resulted from the LS scheme for the time domain
OFDM symbols is fairly accurate, and results in a good initial mitigation of the channel
effects with relatively low computational impact [13].

Figure 7. Block diagram of the equalization process.

In addition, an extra design parameter (δ) is introduced to strengthen the learning
phase in the time domain. This determines how many pilots in the time domain are used for
each training step of each slot. This parameter is important as it uses the time dependency
of the channel to improve the estimation/equalization processes by considering that
the vehicular environment changes rapidly over the time domain. According to our
observations, and as is expected in this scenario, a high value of δ might have a negative
impact on the system performance. Evidently, the proposed scheme (Figure 7) replaces
the channel estimation and equalization blocks seen in Figure 2, by combining them into a
single operation after the FFT module. To depict the general operation of the novel SS-ELM
equalizer step by step, the SS-ELM training and testing is presented in Algorithm 3.

It is important to consider that the actual value of unlabeled data used for the training
of each data frame is the multiplication of µ with the number OFDM symbols Nsymbols and
the number of slots. Even though the values that are shown in the next Section are small,
these values do not directly represent the total amount of data used for the unsupervised
learning step of the SS-ELM scheme. Finally, each slot can be processed parallel to each
other, by allowing the reduction in the execution time needed to process a full data frame.
In fact, this procedure is done in Section 4.4 to estimate the complexity of the proposal.
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Algorithm 3: SS-ELM training and equalization.

Nsymbol is the same in Equation (1) and depicts the total number of OFDM symbols
Input:
Training stage: Labeled data, Ul = {YT1, YT2, PR}, Tl = {XT1, XT2, PT} where

XT1, YT1 and XT2, YT2 are the two long training symbols and PT , PR, are the pilot
vector transmitted and received respectively constructed as:
{PT , PR} = {Yi(p), Xi(p)}i+δ/2

t=i−δ/2
Unlabeled data, Uµ = {Yp

i (k)}
µ
k=1

Testing stage: Corrupted data, Yi(k)
Output:
Training stage: βELM

Testing stage: ˆYi(k)
for i = 1 to Nsymbol do

Training stage: train the SS-ELM computing βELM based on Algorithm 2:
1: Construct the graph Laplacian L from both Ul and Uµ

2: Initiate an ELM network of nh hidden neurons with random input weights
and biases, calculate the output matrix of the hidden neurons F

3: Select the hyper-parameters C and λ
4: Find the output weights
if nh <= Nm then

βELM = (Inh + FTCF + λFT LF)−1FTCT̃
else

βELM = FT(Il+µ + CFFT + λLFFT)−1CT̃
end
Testing: The equalization step for the ith OFDM symbol is perform by feeding

the slot signal Yp
i to the model.

1: Compute the output of the hidden layer Fsignal
2: Compute the output of the ELM with Fsignal βELM

end

4. Simulation Results and Discussions

To further validate our proposal (SS-ELM), we evaluated other state-of-the-art schemes;
these techniques are LS, STA, CDP, and C-ELM [13]. For the case of the LS, STA, and CDP
schemes, Zero Forcing (ZF) is used as the channel equalize [23]. For comparison results,
note that among the several ML-based approaches reported in the literature, we included
the C-ELM method, as it has shown the best BER performances without computational cost,
not only for communications through optical fiber [21,22] but also for advanced wireless
communication systems [13,24–27]. Of course, these works are not focused on IEEE 802.11p-
based V2V communication systems, which present a harsh non-stationary, time-varying,
frequency-selective channel; refer to Section 2. On the other hand, it is worth noting that
our proposal works with strictly real data (a single constellation symbol is divided into
its quadrature and in-phase parts) and consists of a semi-supervised machine learning (a
combination of supervised and unsupervised learning). While the C-ELM [13] represents
fully complex neural networks under only supervised learning. Furthermore, the C-ELM
neural network needs a bounded and differentiable activation function defined in the
complex plane and cannot follow semi-supervised training, which limits its generalization
ability. Each one of these models is tested in two different system setups. Further details
regarding the system setups are given in the subsequent lines. A Monte Carlo simulation
of 21 iterations is used to ensure statistical regularity. A total of 10.000 data frames are
transmitted in each iteration, and Eb/N0 ranging between 0 to 20 dB that correspond to real-
life scenarios [28] are used in the evaluations. The parameters used to perform the simulations
are shown in Tables 1 and 2. Specifically, Table 1 illustrates the IEEE 802.11p system parameters
for a 10 MHz channel, whereas Table 2 shows the evaluated system configurations.
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Table 2. Simulation parameters.

Parameter Configuration 1 Configuration 2

Carrier Frequency ( fc) 5.9 GHz 5.9 GHz
Bandwidth (B) 10 MHz 10 MHz

Modulation BPSK BPSK
Number of OFDM symbols per package (L) 128 128

Transmitter velocity (VT ) 40 km/h 20 km/h
Receiver velocity (VR) 40 km/h 20 km/h

Transmitter movement angle (γT ) 105° 10°
Receiver movement angle (γR ) 70° 70°

Transmitter acceleration angle (βT ) 105° 15°
Receiver acceleration angle (βR) 250° 70°

Initial distance (D) 300 m 100 m
Radius of the ring (d) 30 m 30 m

Both system configurations simulate an urban environment, with speeds lower than
50 km/h. The first configuration depicts a scenario in which the transmitter is accelerating
and changing lanes in preparation to overtake the receiver [29], whereas the second config-
uration is a scenario in which the receiver is taking an intersection while the transmitter
remains in the same lane. For clarification purposes, the parameters that originate the over-
take and intersection scenarios (the movement angles, acceleration angles, and velocities
of the transmitter and receiver, and initial distance) are shown in bold in Table 2. In this
sense, these parameters are highlighted with a red color in Figure 5, where they can also
be easily distinguished. Furthermore, the simulations are done with Binary Phase Shift
Keying (BPSK). This is because, with BPSK, we have the slowest data rates, as well as
the most robust transmissions, which are critical in safety applications. To conclude this
part, in order to find the sub-optimal hyper-parameters of the SS-ELM and compare the
performance of the different models, we will present the results as a function of the BER
and Eb/N0.

4.1. Numerical Optimization of the SS-ELM Hyper-Parameters

The proposed scheme has several parameters that need to be optimized, and some of
these parameters have a correlation between them, so they need to be optimized together.
Throughout the paper, we adopt the sigmoid mapping function, since it has reported an
excellent generalization ability [18,22]. We initially optimized the regularization parameter
C and the number of hidden neurons nh, by considering λ = 0 and µ = 0. This means
that the first optimization is basically the same for a supervised ELM. To select the best
parameters, we use contour plots, which are obtained for four Eb/N0 values: 5, 10, 15,
and 20 dB for the two channel configurations presented in Table 2. In Figures 8 and 9,
each point of the contour plot corresponds to the representative BER value obtained by
following the Monte Carlo simulation explained at the beginning of this Section. Then,
to select the sub-optimal values of the regularization parameter and number of hidden
neurons that minimize the system performance, we use visual inspection. Namely, the ar-
eas with the best performance (blue zones) and overlap among most of the figures are
chosen. All sub-figures in Figures 8 and 9 are considered in order to obtain a BER in-
variant to the movement angles, acceleration angles, and velocities of the transmitter and
receiver. As expected, these plots also verify that the BER decreases as the relationship
Eb/N0 increases.

In Figures 8 and 9, we can see that there is a trade-off between the optimized param-
eters and the ELM predictability. When the number of hidden neurons is increased, it is
possible to decrease the value of the regularization parameter C without compromising the
BER performance. In general, the system performance severally decreases if the number of
hidden neurons does not exceed the value of 24, specially for regularization parameters
lower than 100. Furthermore, if both simulation configurations are compared, it can be
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observed that the BER metric decreases from configuration 1 to 2 and that the area of the
optimal parameters increases from configuration 1 to 2. Based on the previous observations,
we selected C = 101 and nh = 64, namely, a pair of hyper-parameters that are inside the
optimal area of both configurations. This adoption also considers that the ELM architecture
is kept simple, namely, a minimum number of hidden neurons is selected. It is important
to notice that the apparent optimal area increases from configuration 2 to 1, which indicates
that, for bigger velocity values, the optimal area may be bigger and will probably contain
the ones shown above.

Figure 8. BER countour plot in terms of the regularization parameter C, number of hidden neurons, and different Eb/N0

values for system configuration 1.

Figure 9. Cont.
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Figure 9. BER countour plot in terms of the regularization parameter C, number of hidden neurons, and different Eb/N0

values for system configuration 2.

Once the values of C and nh were optimized, we proceed to optimize the parameters
λ and µ simultaneously for the SS-ELM training/testing, in the same way as the previous
ones for the standard ELM. Remember that λ represents the trade-off parameter between
the supervised and no-supervised learning and µ proportionally represents the number of
unlabeled samples; refer to the end of Section 3. Note that, for these results, we use a linear
representation of the BER instead of a logarithmic one because the results are closer to each
other and the resulting areas are smaller. Looking at the results of Figures 10 and 11, it
can bee seen that the optimal areas are relatively smaller when compared with the ones
shown in Figures 8 and 9. This means that there is a smaller range of values that can be
used without compromising the BER performance. Furthermore, the values obtained are
more sensitive to different channel configurations. It can also be seen in Figures 10 and 11
that, when the value of the parameter µ is higher than 7, the system performs poorly. This
result indicates that the proposed SS-ELM algorithm suffers over-fitting, or that there is
too much noise added to the training process with the unlabeled data inclusion. When
considering the parameter λ, it can be seen that the better values tend to be bigger than 100

for the first configuration, and bigger than 101 for the second configuration. This behavior
means that SS-ELM benefits from bigger values of λ, meaning that the non-labeled data
have a big impact on a one-to-one comparison with the labeled data. Then, the selected
parameters are λ = 100 and µ = 6, because this combination shows the best overall results
for the simulated configurations. Finally, considering that the total value of unlabeled data
used to train each data frame is µ = 6 times Nsymbols = 128 times 4, the total value used
is 3072 symbols; when we compare this number with the total number of labeled data
available for the training (616 symbols), we can observe that we use approximately five
times more unlabeled data than labeled data for the training procedure. Hence, we take
advantage of the semi-supervised paradigm, where we have few labeled data and plenty
of unlabeled data. Transforming this to the studied communication scenario, we have only
four pilot subcarriers to equalize 52 data subcarriers, but we use unlabeled data to improve
the performance.
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Figure 10. BER contour plot of λ and µ for different Eb/N0 values and system configuration 1.

Figure 11. BER contour plot of λ and µ for different Eb/N0 values and system configuration 2.
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4.2. Impact of the δ Parameter on the BER Metric

In this Subsection, we analyze the results of the proposed SS-ELM for different values
of the δ parameter. As mentioned in Section 3, the δ parameter is oriented to decrease the
time-variant channel effects in the system performance. To this end, it relates to the number
of pilot subcarriers employed in the learning phase of each time slot.

In Figures 12 and 13, it can be seen the BER resulted from the SS-ELM scheme against
Eb/N0 for diverse δ parameters by considering configurations 1 and 2, respectively. The LS
results are also displayed as a reference BER curve. In the following Section, our proposal
will be carefully compared with the bench-marking estimators/equalizers. There is a
direct relation between the value of the parameter δ and the BE performance. We can
also see that, for system configuration 1, there is a clear improvement, with values of δ
near to 12; this enhancement is not present for configuration 2. Therefore, it is possible to
say that the impact of the parameter δ in the performance of the systems is higher for a
rougher system setting, such as the configuration 2. Finally, there is a clear performance
improvement for the close interval between 7 and 12 of the parameter δ for both of the
evaluated configurations. In conclusion, the best overall results are obtained with a SS-
ELM characterized by δ = 16, by relaxing the Eb/N0 requirement with respect to the
LS technique.

0 5 10 15 20
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10
-1

10
0

Figure 12. BER of the proposed SS-ELM scheme with δ as parameter and the LS algorithm for system
configuration 1.

4.3. Performance Comparison

In this Subsection, we compare the results between the LS, STA, CDP, traditional ELM,
C-ELM [13] techniques, and our proposal, which is based on a SS-ELM neural network. For the
standard ELM, the regularization parameter and the number of hidden neurons are the same
as the SS-ELM, namely C = 10 and nh = 64. Furthermore, in our proposal, the rest of the
hyper-parameters are the following: λ = 100, µ = 6, and 16. Remember that these adoptions
are done in order to minimize the system performance (see Section 4.2). According to [13], we
adopt 512 hidden neurons and the arcsinh mapping function for the C-ELM.

For the first and second configuration, Figures 14 and 15 depict the BER as a function
of Eb/N0 for the different techniques evaluated. It can be seen that ELM, C-ELM, SS-ELM,
and LS methods tend to have the same BER, regardless of the scenario. On the other hand,
for the first and second configurations, the STA method has the worst and best BER values,
respectively. The CDP method outperforms the other techniques for high SNRs only for the
first configuration. These observations mean that STA and CDP do not perform uniformly
for different channel configurations; consequently, these techniques are not feasible for
V2V communications. Among the rest of the evaluated techniques, our proposal shows a
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uniform and slightly better performance for the evaluated scenarios, especially for higher
SNRs. For instance, given a threshold of BER = 10−1 in the first configuration, the SS-ELM
allows a Eb/N0 greater than 8 dB. Meanwhile, the Eb/N0 requirement corresponds to 9, 10,
and 14 dB in the case where the LS, ELM, and C-ELM approaches are used, respectively. It
is worth noting that observations for SNRs greater than 20 dB can be discarded, since these
values rarely occur in real settings [28]. Furthermore, it is worth noting that the vehicular
communication channel evaluated in this manuscript is extremely harsh; therefore, none
of the evaluated schemes achieved the BER threshold given by the standard and equal to
10−3 [30,31].
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Figure 13. BER of the proposed SS-ELM scheme with δ as parameter and the LS algorithm for system
configuration 2.

The superiority reported in our proposal can be explained by the use of the ELM neural
network along with the exploitation of the semi-supervised machine learning scheme.
With respect to conventional neural network learning algorithms, the ELM algorithm has
demonstrated a better generalization performance in the presence of linear and no-linear
distortions [13]. Its generalization ability comes from the parameter neurons between
adjacent layers are found by reaching both the smallest training error and the smallest
norm of output weights. On the other hand, semi-supervised learning has been applied
to several classification and regression tasks with excellent results, in which both the
labeled and unlabeled data are used to improve accuracy over supervised approaches.
It occurs especially when insufficient training information is available [20]. The reason
behind this is that unlabeled data naturally provide valuable information for exploring
the data structure in the input space. To conclude this explanation, it is well known that
the interactions among different types of impairments (such as the harsh time-varying,
frequency-selective channel considered in this manuscript) are not effectively considered
and handled for non-based ML-based schemes [6]. For instance, STA and CDP techniques
were not designed considering the characteristics of the vehicular channel. In regular
channels, STA uses frequency dependencies to improve the performance, but in vehicular
communications, the channel varies rapidly in frequency, explaining the poor results for
rougher channels. Meanwhile, CDP suffers greatly from low Eb/N0 because it uses the
channel estimation iteratively to equalize the channel, so, in high noise environments, this
estimation is contaminated, decreasing the performance.
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Figure 14. BER as a function of Eb/N0 for different evaluated techniques and system configuration 1.
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Figure 15. BER as a function of Eb/N0 for different evaluated techniques and system configuration 2.

4.4. Execution Time Analysis

In this Subsection, we evaluate the performance of the addressed techniques in terms
of execution time, which is the time required by the algorithms to complete the processing
(from the FFT module to the parallel to serial converter, see Figure 2). As the execution
time is hardware/software dependent, Table 3 is presented to show the hardware con-
figuration used in the simulations. Regarding software features, Matlab R2017a has been
used to perform the evaluation. To measure the representative interval times, we follow
the Monte Carlo simulation explained at the beginning of Section 4 by fixing the channel
model parameters at arbitrary values, since these do not interfere in the estimation of the
processing times. Because each of the frequency slots shown in Figure 6 has a localized
submapping estimation and equalization, the slots can be processed independently from
each other, thus decreasing the execution time of the proposed SS-ELM scheme by a factor
of 4 due to the number of pilots in an OFDM symbol (refer to Figure 6). The results of this
experiment are depicted in Table 4 under the name of parallel SS-ELM.
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Table 3. Computational system specifications.

Component Model

Central Processing Unit (CPU) Intel i5 10400F
2.9 GHz–4.1 GHz

Random Access Memory (RAM) 16 GB 2133 MHz
Graphics Processing Unit (GPU) GTX1060 6 GB

Table 4. Algorithm execution times.

Algorithm Time [ms]

LS 0.0269 ± 0.0095
STA 13.5 ± 0.344
CDP 18.4 ± 0.471
ELM 40.5 ± 5.1
C-ELM [13] 127 ± 9.74
SS-ELM 658 ± 10.4
Parallel SS-ELM 167 ± 2.6

The results of Table 4 depict that the proposed SS-ELM increases the execution time
by around 19 times compared to the CDP estimator for instance, and when optimized
with parallel computing, the execution time is reduced to 167± 2.6 ms, increasing the
time to approximately nine times. Note that although the SS-ELM scheme requires the
largest operation time among the evaluated techniques, its execution time is still far from
the upper limit of latency equal to 300 ms [5] specified by ETSI for safety applications.
It is important to consider that these results are software/hardware-dependent, so the
results may vary from device to device. Finally, considering that the computer processing
units that modern cars have on board are powerful, the overall results of the proposed
algorithm are sufficient to justify an increase in the execution time. This is especially
important for safety applications in vehicular communications, where a low BER is vital
to ensure the reliability of the information. Considering the execution time. the proposed
algorithm is suitable for safety applications such as collision risk warning or road hazard
signaling [5]. However, its use for critical safety applications such as pre-crash sensing
should be investigated further.

Note that although the proposed SS-ELM scheme has the longest execution time
with respect to the compared models, we conclude that it is possible to further reduce the
learning and/or operation time of the scheme by having only one layer forward, e.g., on
an Field-Programmable Gate Array (FPGA) [32]. In future work, we will explore the use
of FPGAs to implement the proposed scheme, analyse the impact of a larger sample size
of δ, the possibility of applying unsupervised configurations as an alternative to semi-
supervised ones, and analyse the impact of using channel coding schemes in different
system configurations.

5. Conclusions

This work demonstrates the feasibility of using ML algorithms as an alternative to
classical techniques, used in wireless communication systems, to estimate and equalize the
vehicular communication channel. A channel estimation and equalization algorithm based
on extreme learning machines was designed and tested over two different channel system
configurations: overtake and intersection scenarios.

An improved version of an SS-ELM channel estimator and equalizer was introduced
for vehicular communications considering the 802.11p amendment. The proposed SS-
ELM scheme outperformed the extreme learning machine (ELM) and the fully complex
extreme learning machine (C-ELM) algorithms for the evaluated scenarios. Furthermore,
the proposed SS-ELM scheme performed similarly compared to other traditional techniques.
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The proposed scheme had a better performance for lower Eb/N0 values compared to STA
and CDP for the first and second system configurations, respectively, considering that
Eb/N0 values in wireless environments are usually lower than 20 dB.

We analyzed the impact that δ has on the equalization process, and concluded that
there is still room for improvement when considering rougher channel configurations than
the ones shown in this work. As the value of δ increases, the algorithm requires a longer
execution time, but a larger δ enhances the performance of the algorithm, it becomes
suitable for optimization.

Finally, the execution time of the proposed model was simulated on a general-purpose
computer with an interpreted language such as Matlab, for a fair comparison with the
other models. Even though the SS-ELM scheme requires the largest execution time among
the evaluated techniques, it still falls within the latency window specified by the standard.
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The following abbreviations are used in this manuscript:
ANN Artificial Neural Network
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BPSK Binary Phase Shift Keying
CDP Constructed Data Pilots
CFR Channel Frequency Response
CP Cyclic Prefix
CPU Central Process Unit
C-ELM Complex Extreme Learning Machine
C-V2X Cellular Vehicular to Anything
DC Direct Current
DL Deep Learning
ELM Extreme Learning Machine
ETSI European Telecommunication Standards Institute
FFT Fast Fourier Transform
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
IFFT Inverse Fast Fourier Transform
LS Least Squares
ML Machine Learning
MMSE Minimum Mean-Square Error
OFDM Orthogonal Frequency Division Multiplexing
PHY Physical Layer
RAM Random Access Memory
SS Semi-Supervised
SS-ELM Semi Supervised Extreme Learning Machine
STA Spectral Temporal Averaging
SNR Signal to Noise Ratio
VCS Vehicular Communication Systems
V2V Vehicle to Vehicle
V2I Vehicle to Infrastructure
WiFi Wireless Fidelity



Electronics 2021, 10, 968 22 of 23

WSSUS Wide-Sense Stationary Uncorrelated Scattering
ZF Zero Forcing
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