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Abstract. As a consequence of the Global Warming, the decrease in water resources is a
problem that affects the agricultural systems worldwide. In particular, the Global Warming
has produced a sustained decrease in precipitation in Mediterranean-type climatic zones and
the more frequent presence of droughts. A dry-and hot environment could negatively affect the
physiology of the fruit tree, compromising its growth and development rates, especially, the yield
of a fruit tree results from the interactions between genotype, climate, soil, crop management,
and irrigation. This work theoretically studies the growth dynamics of fruit trees with a limited
water resource by a mathematical model. A system of non-linear ordinary differential equations
was used as a method to describe the growing phenomenon. A qualitative analysis of the system
was carried out, and local and global stability results were obtained. The analysis showed that
the limitation of water resources compromises the growth dynamics of the fruit tree, causing a
total loss of the fruit tree.

1. Introduction
Rising global temperatures due to global warming are significantly affecting agricultural systems
of Mediterranean-type climate zones worldwide. This increase in average temperatures, added
to heatwaves, has been coupled with a decrease in rainfall. Global warming is a big concern for
fruit producers because, according to Food and Agriculture Organization of the United Nations
(FAO), agricultural systems worldwide consume nearly 70% of the available freshwater, where
the production of fruits is done mainly under irrigation. Thus, a decrease in the water resources,
due to global warming, especially in semi-arid zones, generates a loss of productivity, affecting
the physiology of the fruit tree and compromising its growth rate, fruit yield, and quality.

The changes in the surface energy balance due to Global warming have increased the high
temperatures. In the trees growing season,the higher temperatures affect their water fluxes,
increasing their water consumption or evapotranspiration. The higher evapotrans-piration,
combined with dry soils, produces water stress to trees. This physiological response of the trees
significantly reducing the tree’s photosynthetic rates, negatively affecting the fruit growth [1–3].
It is important to highlight that fruit tree yields result from interactions among the genotype,
climate, soil, crop management, and irrigation, which is the most critical factor. They have been
extensively studied in field experiments for different conditions. However, the results presented
are limited only to each empirical research, not applying to all possible scenarios.

A model is a representation of a real set with a certain degree of precision and as complete
as possible [4], in which variables and parameters that describe the relationships to be studied



5 + 1 IMRMPT
Journal of Physics: Conference Series 2046 (2021) 012017

IOP Publishing
doi:10.1088/1742-6596/2046/1/012017

2

are incorporated. To biological systems such as crops, a culture model can be described as a
quantitative scheme for predicting growth, development and performance of this, given a set of
genetic characteristics and environmental relevant variables [5, 6].

Different researches on crop modeling, have been done mainly in herbaceous crops as
presented in [6–9]. Different models of dynamic type for the growth of trees are presented
in [10]. However, as far as the authors are aware, there is no evidence of a mathematical
model of fruit trees grow that considers the interaction between energy and water. This paper
proposes a mathematical model to represent the growth dynamics of fruit trees under a water
deficit scenario.

2. Mathematical modeling
The growth dynamics of a crop are the result of interactions involving the genotype, energy, soil,
water, and crop management among other factors [6, 11]. therefore, the following assumptions
are made.

(i) For the construction of the model proposed in this work that describes the growth dynamics
of fruit trees under a water deficit scenario, an adult fruit trees (older than 5 years) is
assumed with ideal soil conditions and optimal pest control management and the use of
fertilizers under the recommendations made for that purpose.

(ii) We assume that the accumulated energy E = E(t) in the system is constant, so the variation
of this with respect to time E′(t) = 0 implies that E(t) = q.

The variables and parameters that intervene in the growth dynamics of fruit trees according
to our model are summarized in Table 1.

Table 1. Parameters used in the model and their meaning.

Parameter Meaning

q Accumulated energy constant
r Fruit trees intrinsic growth rate
N Fruit carrying capacity
τ Evapotranspiration rate
γ Photosynthetic contribution rate
ω Mortality rate of fruit trees

We denote W = W (t) the water amount in soil in time t and C = C(t) the fruit biomass
concentration in time t, both state variables. The variation of the amount of water in the system
with respect to the time is denoted by W ′(t). It is being affected by a loss of water determined
by evapotranspiration at a rate τ . At the same time, another amount of water is being utilized
for the growth of fruit trees at a rate r. Also, the variation of biomass growth in the system
with respect to time denoted by C ′(t) is being affected by a corresponding input water-growth
biomass interaction at a rate r. There is also a rate γ corresponding to the energy absorbed
by the fruit trees for its vegetative growth, and there is an output given by the term ωC which
corresponds to the loss of fruit trees growth due to natural causes at a rate ω.

The diagram that represents the growth dynamics of the fruit tree is presented in
Figure 1; where E = energy; W = water concentration; C = fruit biomass concentration;
r = fruit trees intrinsic growth rate; N = fruit carrying capacity; τ = evapotranspiration rate;
γ = photosynthetic contribution rate; ω = mortality rate of fruit trees; p = rainfall rate;
I = irrigation.
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Figure 1. Dynamics flow chart.

Based on the aforementioned, this model proposal represents the growth dynamics of fruit
trees under a water deficit scenario, which can be described by the system of non-linear
differential equations, Equation (1), as follows.

W ′(t) = −τqW (t)− rC(t)(1− C(t)
N )W (t),

C ′(t) = rC(t)(1− C(t)
N )W (t) + γqC(t)W (t)

(C+1)(W+1) − ωC(t),

(1)

where W = W (t), C = C(t) are nonnegative, we restrict our attention to the nonnegative
quadrant Ω =

{
(W,C) ∈ R2 : W ≥ 0, C ≥ 0} , and the parameters are all positive in the space

ρ =
{

(q, r,N, τ, γ, ω) ∈ R6
+} .

3. Results
In this section, we consider the mathematical analysis of Equation (1). The technical results
show the behavior of the dynamics studied.

Lemma 3.1. The set Ω =
{

(W,C) ∈ R2 : W ≥ 0, C ≥ 0} is positively invariant under the flow
of Equation (1).

Proof. Since the Equation (1) is of Kolmogorov-type and is defined in Ω, the W-axis and C-axis
are invariant sets.

Lemma 3.2. For initial conditions in Ω, the solutions of Equation (1) are uniformly bounded.

Proof. We define a function, Equation (2).

X(t) = W (t) + C(t). (2)

The time derivative of Equation (2) along the solutions of Equation (1) is Equation (3).

dX

dt
= −τqW − rC(1− C)

N
)W + rC(1− C

N
)W +

γqCW

(C + 1)(W + 1)
− ωC. (3)
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In Equation (3) the function g1 = γqCW
(C+1)(W+1) is bounded, this is |g1(A,C)| ≤ K‖(A,C)‖,

with K > 0. Then, we have Equation (4).

dX

dt
≤ K − (τqW + ωC). (4)

Equation (4) is a differential inequality. Let δ = max{τq, ω} and substituting in the
Equation (4) we have Equation (5).

dX

dt
≤ K − δX (5)

Applying the theory of diferential inequalities [12] and comparison theorem [13] to solve the
equation, we obtain Equation (6).

X(W,C) ≤ K

δ
(1− e−δt) +X(W (0), C(0))e−δt. (6)

In Equation (6) for t −→ ∞, we have 0 < W < K
δ . Hence all the solutions of Equation (1) is

bounded in Ω.

Lemma 3.3. Pe(W,C) = (0, 0) is the unique equilibrium point in the set Ω.

Proof. The equilibrium points are the positive solutions of the system of nonlinear equations
given in Equation (7).

−τqW (t)− rC(t)(1− C(t)
N )W (t) = 0

rC(t)(1− C(t)
N )W (t) + γqC(t)W (t)

(C+1)(A+1) − ωC(t) = 0

(7)

From the first equation, we have Equation (8).

W = 0 or

[
−τq − rC(1− C

N
)

]
= 0 (8)

Equation (8) we obtain. If W = 0, then C = 0. Therefore (W,C) = 0 is an equilibrium
point. If

[
−τq − rC(1− C

N )
]

= 0, This is Equation (9).

C2 − CN − τqN

r
= 0 (9)

Then the roots of Equation (9) are real and are given by C1 = 1
2(N +

√
(−N)2 + 4m) and

C2 = 1
2(N −

√
(−N)2 + 4m), with m = τqN

r . Substituting C1 in the second term of the
Equation (7), we have Equation (10).

W 2 + aW − b = 0. (10)

With a = 1 + N(γq−ω(C1+1))
r(N−C1)(C1+1) and b = ωN

r(N−C1) . The roots of Equation (10) are real if a2 ≥ 4b

and are given by W1 = 1
2(−a +

√
a2 + 4b) and W2 = 1

2(−a −
√
a2 + 4b). This implies

that: If a > 0, then W1 and W2 are negative, since b < 0. If a = 0, then the roots
of Equation (10) are complex. If a < 0, then W1 and W2 are negative. Therefore, the unique
non-negative equilibrium point of biological interest is Pe = (0, 0).

Proposition 3.1. The equilibrium point Pe(W,C) = (0, 0) is locally asymptotically stable.
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Proof. We use the Lyapunov indirect method [14]. The Jacobian matrix of the Equation (1) is
given in Equation (11).

J(W̄ , C̄) =

 −τq − rC̄(1− C̄
N ) −rW̄ (1− 2C̄

N )

rC̄(1− C̄
N ) + γqC̄

(C̄+1)(W̄+1)2
rW̄ (1− 2C̄

N ) + γqW̄
(W̄+1)(C̄+1)2

− ω

 . (11)

The matrix of linearization around the equilibrium Pe is given in Equation (12). This is, the
Jacobian matrix in Pe.

J(Pe) =

(
−τq 0

0 −ω

)
. (12)

The eigenvalues of J(Pe) are λ1 = −qτ and λ2 = −ω, both negative. Then the equilibrium
point Pe(W,C) = (0, 0) is locally asymptotically stable.

Proposition 3.2. Equation (1) has no closed orbits in Ω.

Proof. We use the Bendixson’s-Dulac’s negative criterion [15]. Equation (1) is rewritten in the
Equation (13). {

W ′(t) = F (W,C)
C ′(t) = G(W,C)

(13)

Define a Dulac function B(W,C) = W−1C−1, from Equation (13) we have the Equation (14).

D = ∂(BF )
∂W + ∂(BG)

∂C

= −
(
r
N + γq

(W+1)(C+1)2

)
.

(14)

The Equation (14) is strictly negative in the interior of the first quadrant. Thus, there cannot
be a closed orbit in Ω.

Theorem 3.1. The equilibrium point Pe(W,C) = (0, 0) is globally asymptotically stable.

Proof. We use the Lyapunov Theorem [13]. Define a Lyapunov function L(W,C) = (W +C)2

for Equation (1) that satisfies:

(i) L(0, 0) = 0, for (W,C) = (0, 0).

(ii) L(W,C) = (W + C)2 > 0, ∀(W,C) ∈ {Ω− (0, 0)} .

(iii) L′(W,C) ≤ 0, this is Equation (15).

L(W,C) = (W + C)2,
L′(W,C) = 2(W + C)W ′ + 2(W + C)C ′

= 2(W + C)(W ′ + C ′)
= −2(W + C)Φ.

(15)

With Φ(W,C) = (τqW + ωC − γqWC
(W+1)(C+1)), since Φ > 0 for all (W,C) ∈ Ω. Then in the

Equation (15) L′(W,C) < 0 ∀(W,C) ∈ {Ω− (0, 0)} , since L(W,C) is a strict Lyapunov
function. Therefore, Pe(W,C) = (0, 0) is globally asymptotically stable.
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Figure 2 shows the dynamic behavior of the water amount (W) and the resulting biomass
of the fruit tree (FB), considering a scenario of the variation in the accumulated energy of
the system. In this respect, [W1] and [W2] depicts that the trend of water concentration
sustained decreased in time, showing a higher depletion in the case of fruit concentration (fruit
growth). Furthermore, [FB1] and [FB2] show that a higher water reduction produces higher fruit
growth. Segmented lines show that when considering an increase in the accumulated energy,
the concentration of water is depleted in a short period of time [W2], for its part the biomass of
the fruit tree [FB2] increases rapidly, its growth compromising it is at the point in which there
is water shortage.

These simulations could be considered realistic because the growth rate of fruit is affected
by the transpiration rates of the fruit trees. Also, the trends of fruit growth present a logistic
behavior, which is common in agricultural systems. According to [10], the logistic models allow
describing that the growth is highly dependant on the quantity of growth machinery, which is
proportional to the dry mass production. In this case, the growth is irreversible and directly
dependent on water availability.

Figure 2. Simulations of the dynamic behavior of the water
amount (W ) and the resulting biomass of the fruit tree (C).

In this regard, the numerical simulation presented in Figure 2 is a good representation of the
dynamic behavior of fruit trees growing in a water deficit scenario and is consistent with the
studies presented in [2, 3]. In Figure 2 continuous lines corresponds to the dynamic of the fruit
grow, and water depletion with W = 0.6, C = 0.4 and parameter values r = 0.05, q = 0.07,
N = 3000, τ = 0.004, γ = 0.001, ω = 0.0005; while the segmented lines corresponds to the
dynamic of the fruit grow, and water depletion considering an increase in accumulated energy
with W = 0.6, C = 0.4 and parameter values r = 0.09, q = 0.9, N = 3000, τ = 0.004, γ = 0.001,
ω = 0.0005. Moreover, the numbers 1 and 2 denote the first, and second simulations of (W ) and
(FB), respectively.
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4. Conclusions
In this work, we developed a qualitative model, based on a bidimensional non-linear differential
equations system, to describe the growth dynamics of a fruit tree, under a water deficit scenario.

The results of this work showed the vital importance of water resources for the growth of
fruit trees. This was reflected in the technical results about asymptotical behavior, where was
possible to prove that the origin is a global attractor for all feasible initial condition. The
simulations of the sustained decrease in water availability generated losses in the productivity
of the fruit trees, comprising their growth and development rates.

The performance of the proposed model was considered. Dynamical aspects related to system
solutions qualitatively reflected the effects of water depletion on the fruit trees’ growth.
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