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Abstract: During their lives, insects must cope with a plethora of chemicals, of which a
few will have an impact at the behavioral level. To detect these chemicals, insects use
several protein families located in their main olfactory organs, the antennae. Inside the
antennae, odorant-binding proteins (OBPs), as the most studied protein family, bind volatile
chemicals to transport them. Pheromone-binding proteins (PBPs) and general-odorant-
binding proteins (GOPBs) are two subclasses of OBPs and have evolved in moths with a
putative olfactory role. Predictions for OBP–chemical interactions have remained limited,
and functional data collected over the years unused. In this study, chemical, protein
and functional data were curated, and related datasets were created with descriptors.
Regression algorithms were implemented and their performance evaluated. Our results
indicate that XGBoostRegressor exhibits the best performance (R2 of 0.76, RMSE of 0.28
and MAE of 0.20), followed by GradientBoostingRegressor and LightGBMRegressor. To
the best of our knowledge, this is the first study showing a correlation among chemical,
protein and functional data, particularly in the context of the PBP/GOBP family of proteins
in moths.

Keywords: chemical ecology; lepidoptera; odorant-binding proteins; artificial intelligence;
ligand binding; regression algorithm

1. Introduction
Insects play an important role in ecosystems. However, as a result of globalization,

invasive species have spread quickly and are now a problem in many countries [1,2]. These
insect pests have an extraordinary sense of olfaction, adapting to new regions and climates
using plants as hosts for feeding or oviposition [3]. In particular, moths have become
serious pests throughout the world, where the cotton leaf worm Spodoptera littoralis, spongy
moth Lymantria dispar, codling moth Cydia pomonella, oriental fruit moth Grapholita molesta,
Indian meal moth Plodia interpunctella, and grapevine moth Lobesia botrana are few examples
of highly invasive widespread polyphagous species [4].
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Olfaction-driven behaviors in moths have proven to be key for the development of
traps baited with odorants, either sex pheromones or attractants (i.e., semiochemicals) [5].
Traditionally, these chemicals have been identified by time-consuming methods using live
insects, volatile trapping in polymers, chromatographic analysis, and, ultimately, behav-
ioral assays in both the laboratory and field. In addition, pheromone identification has
remained elusive in some species following this traditional approach [6]. More worry-
ingly, new insects are being introduced in new countries, and pest management strategies
must be implemented, involving time and expenses for local governments. Normally,
insecticides are the primary and cheapest resource for insect control, and are sometimes
complemented by odorant-baited traps taking advantage of the well-tuned olfactory system
of moths [7]. In that sense, key odorants that elicit behavioral responses in these species
must be identified [8].

In insects, the primary olfactory organs are sensilla on the antennae, inside which some
protein families, called chemosensory proteins, play pivotal roles in detecting odorants
(i.e., volatile organic compounds or VOCs) [9–12]. The odorants that bind to these proteins
are highly specific, and in moths, it has been shown that behavioral responses can be
elicited at very low concentrations (i.e., micro- or nanomolar) [13]. The first chemosensory
protein was discovered in 1981 from antennae of the giant moth Antheraea polyphemus,
and called the odorant-binding protein (OBP) [14]. More than forty years later, OBPs
have become the most studied chemosensory protein and the target of choice for studying
insect chemosensation, evidenced by multiple review articles [8,10,12,15–18]. Briefly, OBPs
transport odorants from olfactory pores located in hair-like structures called sensilla, which
are distributed across antennae. Afterwards, OBPs deliver odorants to ORs for olfactory
transduction, and, ultimately, insect behavioral responses are unleashed. In moths, an
evolutionarily conserved clade of OBPs are significantly expressed in antennae rather than
other tissues, showing high binding affinities (i.e., Ki) to odorants with semiochemical
functions [19–21].

Nowadays, genomic and transcriptomic approaches allow the identification of dozens
to hundreds of insect moth OBPs, with 15–45 OBPs usually identified in each lepidopteran
species [16,22]. OBPs, from olfaction-derived data, are considered the first filter of odor-
ants in the antennae of insects, and are extensively studied [22]. To date, approximately
28,700 amino acid sequences for OBPs have been deposited in UniProt database. This is
2.3 times the number of sequences for ORs, the other olfactory proteins that recognize
odorants in insects [23]. Although recent evidence suggests that OBPs appear to have
both chemosensory and non-chemosensory functions, OBPs still are crucial for insect
olfaction [12].

Furthermore, OBPs have become the target of choice for odorant discovery due to
their inherent binding affinities [10,16]. The use of OBPs for in vitro functional evidence
can overcome factors related to live insects, such as life cycle, size, abundance, and colony
ñrearing. Furthermore, ample sets of chemicals can be used, accelerating the identification
of odorants with behavioral effects. For instance, the fluorescence binding assay (an
in vitro assay) has become frequent method to test the binding affinity of VOCs to insect
OBPs, resulting in inhibition constant (Ki) values measured in the nano- or micro-molar
(nM or µM, respectively) range [16,24,25]. Currently, 215 functional studies combining
OBPs and VOCs have been reported, and subsequently, 622 VOCs have been counted
with quantifiable data through initiatives such as iOBPdb [26], a centralized database
that reunites OBP and VOC information along with their binding affinities. In moths, a
particular evolutionary clade occurs with OBPs named general-odorant-binding proteins
(GOBPs) and pheromone-binding proteins (PBPs), which are highly conserved among
lepidopterans [27,28]. Although increasing evidence suggests that OBPs might play other
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chemosensory and non-chemosensory roles, research has shown that PBPs and GOBPs
are still crucial in transporting sex pheromone components or both plant volatiles and sex
pheromones [12,28–31]. Currently, it is known that moths have three types of PBPs, whereas
butterflies have two, probably because of the nocturnal habits in moths and, therefore,
their odorant-guided behaviors [28]. Likewise, it is common to identify two GOBPs in
moths [16,32].

Considering the above, current initiatives have focused on comprehensively studying
the main olfactory organ of insects (i.e., antennae), and related proteins that bind VOCs,
providing an opportunity to identify novel behaviorally active chemicals and, consequently,
use them in pest management. Hitherto, molecular and bioinformatics approaches have
addressed the above with some success, where OBPs have played a role as targets [16].
However, new cheaper, reproducible and scalable methodologies are needed to identify
odorants with the potential to be implemented in pest management. In this sense, advances
in computer science have resulted in software capable of learning, helping in visual per-
ception, translation between languages, speech recognition and decision-making tasks,
i.e., artificial intelligence (AI) [33]. Applications of AI to biological problems are becoming
powerful methods of solving biological problems at different scales [34–38]. One type of
AI enables a computer to learn on its own, and this is called machine learning (ML). ML
can identify patterns from databases and make predictions [39–42]. Nowadays, most of the
research that integrates ML and pest management seems to be focused on identification
and monitoring rather than control [43]. Thus, ML has been applied to monitoring insects’
flight based on their dependence on abiotic factors, such as temperature, wind, humidity,
etc. Interestingly, a neural network method with four layers (a type of ML model) was
developed to track the flight of the grapevine moth L. botrana, which is highly influenced
by temperature [44]. Likewise, a 79% accuracy in predicting thrip and squamous and black
weevil incidence using a supervised ML algorithm in the form of logistic regression and
vector machine has been reported [45]. One step further was reported for the noctuid moth
S. littoralis, whereby the authors found the chemical space of volatiles that could elicit
behavioral activity (attraction or repellency) based on the activation of odorant receptors
(ORs) (i.e., SlitOR25) from a panel of 3 million compounds and using a QSAR model (as
a supervised ML model) [46]. Despite the suitability of using ML models for the identi-
fication of behaviorally active odorants, current reports are from a chemical perspective.
Also, sequence-based predictions have been investigated, and to the best of our knowl-
edge, function-based predictions through ML have not been considered for the previously
mentioned purposes. The closest approach to this has been through AlphaFold2 (a deep
learning-based tool), predicting the 3D structure of olfactory proteins and identifying
odorants with putative biological activity [47–49]. However, these studies have focused
on binding characterization from a structural perspective only, and final applications (e.g.,
traps baited with new odorants) are still lacking. Therefore, the objective of this study
was to evaluate and select suitable ML models that can integrate not only chemical and
sequence descriptors (i.e., odorants and OBPs, respectively), but also functional data in
the form of the inhibition constant Kis, which represents the binding affinity between
proteins and ligands, but focusing on PBPs and GOBPs from moths. Here, a proposed
methodology consisted in six main steps with collection and filtering of data, descriptor
search, dataset creation, preprocessing of datasets, model selection and optimization and
evaluation (Figure 1).



Int. J. Mol. Sci. 2025, 26, 2302 4 of 19Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 1. Scheme of proposed methodology. (1) Collection and filtering of PBP and GOBP related 
dataset. (2) Descriptor search based on amino acid sequences and SMILES of compounds. (3) Dataset 
creation of protein and chemical descriptors along with their respective binding affinity. (4) Cluster 
of data divided into 80% training and 20% testing, and normalization of StandardScaler 

Figure 1. Scheme of proposed methodology. (1) Collection and filtering of PBP and GOBP
related dataset. (2) Descriptor search based on amino acid sequences and SMILES of compounds.
(3) Dataset creation of protein and chemical descriptors along with their respective binding affinity.
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(4) Cluster of data divided into 80% training and 20% testing, and normalization of StandardScaler
characteristics followed by transformation of binding affinities for each cluster. (5) Implementation
of 6 ML regression models: For training, optimization for hyperparameters with ten-step cross-
validation for each ML was used. (6) For testing, training with best parameters for 6 ML regression
models was used in order to evaluate the results on plots as shown in the circles in the figure and
compare performance according to Root-Mean-Square Error (RMSE), Coefficient of Determination
(R2) and Mean Absolute Error (MAE).

2. Results
The performance of the optimized models was evaluated using a cluster test (20% of

the data), with the best parameters found through the Root-Mean-Square Error (RMSE),
Coefficient of Determination (R2) and Mean Absolute Error (MAE) [50]. The results from
the metrics of each model are presented in Table 1 and Figure 2.
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Table 1. Evaluation of predictions with 20% test.

Models RMSE R2 MAE

XGBoostRegressor 0.276 0.758 0.202
LightGBMRegressor 0.284 0.745 0.208

GradientBoostingRegressor 0.290 0.733 0.216
AdaBoostRegressor 0.380 0.543 0.292

RandomForestRegressor 0.300 0.715 0.222
SupportVectorRegressor 0.329 0.656 0.236

In terms of accuracy, the XGBoostRegressor model showed the best performance,
reaching an R2 of 0.758, with an RMSE of 0.276 and an MAE of 0.202. This model presented
the best predictions in comparison with the real values, which positions it as a suitable
curated dataset. It was closely followed by GradientBoostingRegressor and LightGBM-
Regressor, which showed an R2 of 0.733 and 0.745, respectively. Both models presented
similar RMSE and MAE values when compared with XGBRegressor, although with a slight
decrease in accuracy.

The RandomForestRegressor also showed a satisfactory yield, with an R2 of 0.715 and
an RMSE of 0.300, which suggests a robust capacity for predictions, although inferior to
other boosting methods such as XGBoostRegressor, GradientBoostingRegressor or Light-
GBMRegressor. On the other hand, Support Vector Regressor (SVR) obtained an R2 of 0.656,
indicating a lower adjustment capacity in comparison with previous models.

Finally, AdaBoost Regressor presented the lowest performance of all the evaluated
models in this study, with an R2 of 0.543 and higher values of RMSE and MAE, suggest-
ing a limited capacity to capture the relationships among variables (chemical, protein
and functional).

The scatter plots (Figure 2) compare the actual values with the values predicted by each
model. The 90% confidence intervals are included to assess the accuracy of the predictions.
XGBoost and LightGBM show strong alignment with the perfect prediction line (red line),
confirming their high predictive power. Gradient Boosting and Random Forest also present
good fits, albeit with a slight dispersion. AdaBoost and SVR exhibit higher errors and
higher variability in their predictions, which is reflected in their lower R2 values.

Table 1 and Figure 2 illustrate the superiority of XGBoostRegressor in predicting
affinities with fewer errors and closer to a perfect prediction line, followed by LightGBM-
Regressor and GradientBoostingRegressor. On the other hand, AdaBoostRegressor is not
recommended due to its high error rate and low fit. These findings suggest that decision
tree-based methods with boosting are the most effective for this problem.

In order to evaluate the feature contribution, the model with the best performance
for Ki prediction was used. Specifically, the XGBoost model was used to conduct Shapley
value analysis. Figure 3 shows the Shapley values of the 20 features (descriptors obtained
with PaDEL or Propy3) with the highest average contribution for Ki prediction. Specifically,
the features TIC5, TIC4, ZMIC1, SdsCH and TIC3 correspond to molecular descriptors
calculated using the PaDEL-Descriptor tool. Specifically, TIC5, TIC4 and TIC3 refer to
the Total Information Content Index—Neighborhood Symmetry of the n-th order. These
descriptors quantify the total structural information based on the symmetry of atoms
within the molecule at different neighborhood levels (n-th order). Since the SHAP analysis
shows that TIC5, TIC4 and TIC3 are the most influential features, this suggests that the
structural symmetry of the molecule at different neighborhood levels is key for interaction
with OBP/PBP proteins. Similarly, ZMIC1 (Z-modified Information Content Index of
the first order) is a modified variant of the Information Content Index (TIC), adjusted
with the Z constant, and captures the first-order neighborhood symmetry of the molecule.
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Finally, the SdsCH descriptor is an electrotopological descriptor that belongs to the atom-
type descriptors of the electrotopological state (E-State). These descriptors are used in
cheminformatics to quantify the electronic and topological properties of specific atoms
within a molecule. In this case, SdsCH specifically refers to the sum of the electrotopological
state values for =CH-type atoms. The fact that these features appear in the top five SHAP
values could indicate a strong correlation with the prediction of the Ki value.
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Figure 3. A SHAP (Shapley Additive exPlanations) summary plot and individual feature impact
plots for the XGBoostRegressor model. The left panel shows the global importance of the features
ranked by their impact on the model’s prediction of binding affinity (Ki) between OBPs (PBP/GOBP
family) and VOCs. Each dot represents a SHAP value for a specific interaction, with colors indicating
the feature value (red: high; blue: low). The right panel presents detailed SHAP dependency plots for
the five most impactful features (TIC5, TIC4, ZMIC1, SdsCH and TIC3), highlighting how variations
in these descriptors influence the predicted binding affinity. The gray histograms in the dependency
plots represent the distribution of feature values in the dataset.

3. Discussion
Olfaction plays a crucial role in the life cycle of an insect. Over time, research has

provided insights into how odorants are recognized by a well-tuned olfactory system,
especially in lepidopterans, where it all started. In 1959, the first sex pheromone was
identified from the silk moth Bombyx mori [50,51]. To date, more than 6500 compounds
have been identified and deposited in the Pherobase database [52] that mediate interactions
among insects, whether sex pheromones (intraspecific) or allelochemicals (interspecific),
both classed as semiochemicals [53]. Some of these chemical compounds, usually volatiles,
are currently used in field traps for monitoring and control. However, their discovery
is highly demanding in terms of time and laboratory expenses and dependent on insect
availability. Therefore, alternative strategies that can overcome these difficulties and, at the
same time, use data from insect olfaction are necessary.

Hitherto, research has focused on insect olfaction following two pathways. The first is
studying chemical information from odorants with or without semiochemical function. For
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example, a supervised ML model through QSAR was used to screen a panel of 3 million
compounds that could elicit behavioral activity (attraction or repellency) in the moth
S. littoralis based on the activation of OR25 [54]. Similarly, a novel set of antagonistic
volatile compounds were reported for Orco (a conserved insect OR co-receptor) from the
fruit fly Drosophila melanogaster using ML models, such as a Naïve Bayesian classifier and
Extended Connectivity Fingerprints. Their results suggested 2-tert-butil-6-metilfenol was
the best at inhibiting behavioral responses in larvae of D. melanogaster [55]. In this sense,
chemical, structural and functional descriptors appear to be key in decoding the odorant–
protein relationship. Thus, SMILES notations have been used for finding odorant–smell
relationships through deep learning approaches, such as deep neural networks (DNN)
and convolutional neural networks (CNN) [56]. Likewise, the use of chemical descriptors
has provided predictions of odor perception based on chemical structure [57]. ML has
also been applied for OBP sequence classification through the Regularized Least-Squares
Classifier (RLSC) [58]. Hence, chemicals and proteins have been analyzed independently,
and therefore, the odorant–OBP relationship has not been decoded by ML algorithms.

A third pathway could be the implementation of functional properties derived from
the binding of a given odorant to an OBP (i.e., Ki) and evaluated through ML algorithms.
To the best of our knowledge, this approach has remained unexplored. In this study, three
datasets were unified and implemented under supervised ML. Thus, XGBoostRegressor
resulted in an R2 of 0.758, and a prediction of the binding between OBPs and ligands by
combining, for the first time, both chemical and protein descriptors along with functional
data in the form of Ki. These findings suggest that the prediction of binding affinities in
the context of OBPs is feasible. The functional properties from OBPs in moths, particularly
PBPs and GOBPs, have been obtained through fluorescence-based assays. Here, chemical
compounds (such as odorants) displace N-phenyl-1-napthylamine (1-NPN, also called a
fluorescent probe) from the unique binding site present in OBPs, acting as competitors.
Although a comparative study reported that Ki could change depending on the fluorescent
probe, this competitive fluorescent assay is still the most widely used technique for insect
OBPs [16,59]. Consequently, initiatives such as iOBPdb, as a database that reunites VOCs (or
odorants as ligands), OBPs and the resulting binding affinities (i.e., Kis), have emerged [26].
Thanks to this database, it is possible to download current deposited data related to OBPs,
VOCs and Kis separately. Furthermore, researchers can contribute their own data, helping
to constantly update iOBPdb [60]. Notably, outside the insect olfaction field, other studies
have used unified functional and chemical data for ML algorithms. An example is the
identification of two lactones as potential inhibitors of acetylcholinesterase (AChE), an
important target of research in Alzheimer’s disease, found based on 7032 molecules with
IC50 and another 8593 secondary metabolites through classification models [61]. Similarly,
datasets of cytochrome P450 inhibitors and IC50 were implemented for Random Forest and
SVM, resulting in over 80% accuracy [62].

With respect to the models implemented, it is possible to say that the best performance
in predicting Ki corresponded to the XGBoostRegressor model, which outperformed Light-
GBMRegressor, GradientBoostingRegressor, AdaBoostRegressor, RandomForestRegressor
and SupportVectorRegressor. The Shapley value analysis (3) revealed that most of the
features with high predictive contributions were derived from the ligand, specifically the
PaDEL-Descriptors. TIC descriptors measure the topological structural complexity of a
molecule, while ZMIC evaluates its connectivity based on Zagreb indices. Among the
top five contributors to the prediction of Ki, it is worth noting that TIC5, TIC4, ZMIC1
and TIC3 represent ligand descriptors. These indices capture key aspects of molecular
structural diversity, including electrical, geometric, symmetric and topological properties.
This finding underscores the critical role of ligand structural features in influencing binding
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affinity predictions. Moreover, the SdsCH descriptor, which pertains to protein-specific
characteristics, particularly hydrophobicity, further highlights the importance of protein–
ligand interactions in the predictive model. The integration of both ligand-centric and
protein-specific features suggests a multifaceted approach to modeling, where the roles
of the structural and physicochemical properties of both entities are essential for accurate
predictions. These observations provide valuable insights into the mechanisms driving
protein–ligand interactions, particularly the binding of PBPs and GOBPs to VOCs, and
pave the way for refining future computational models.

Although the implemented models yielded promising results, due to the predictive
power obtained through R2, there are several avenues for enhancing the proposed approach.
First, increasing both the volume and the diversity of the data could significantly improve
the generalizability of the model [63]. Likewise, expanding the dataset by incorporating
additional OBP and VOC protein data from various databases would extend the analysis to
encompass a broader range of species and chemical compounds. Moreover, performance
evaluation could be beneficial for the inclusion of alternative metrics, such as the Mean
Absolute Percentage Error (MAPE), Concordance Index (CI) or domain-specific metrics
like Receive Operating Characteristic (ROC) and Regression Error Characteristic Curves
(REC), providing deeper insights into critical protein–ligand interactions.

Another potential enhancement involves adopting periodic retraining techniques to ac-
count for new data or leveraging transfer learning models to capitalize on prior knowledge
from related problems. Furthermore, exploring advanced neural network architectures,
such as DeepDTA or Affinity2Vec [64,65], could better capture the intricate complexities
of protein–chemical interactions. Finally, employing advanced feature engineering strate-
gies, such as dimensionality reduction tailored to domain-specific relationships or custom
feature creation, can optimize data representation and improve predictive accuracy [66,67].

These advances will not only enhance the robustness of the model, but also broaden
its applicability in future studies on ecological chemistry and integrated pest management.

4. Materials and Methods
4.1. Data and Preproccessing
4.1.1. Data

The dataset was extracted from the iOBPdb database [26], a free bioinformatics re-
source containing information on odorant-binding proteins (OBPs), volatile organic com-
pounds (VOCs) and the interaction affinity between them. In particular, three specific
subsets of data were used:

• Odorant-binding proteins

This database contains information on 436 OBPs such as their names, species, cystine
counts, protein types, and amino acid sequences with and without signal peptides, among
other characteristics.

• Volatile organic compounds

This database contains information on 621 VOCs such as their names and properties
like molecular formulas, SMILES and functional groups to which they belong.

• Binding affinity (Ki)

This database contains a 621 × 436 matrix that records the binding affinity (Ki) between
VOCs and OBPs.

4.1.2. Preprocessing

The process of filtering and transforming the iOBPdb data began by selecting OBPs
only from species in the order Lepidoptera that fit the PBP and GOBP subcategories,
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applying a taxonomic filter to exclude non-Lepidopteran species using the Python Pandas
library [68,69]. Next, volatile organic compounds (VOCs) related to these species were
identified, ensuring that only VOCs directly linked to Lepidoptera remained. The binding
affinity values for each protein–ligand pair were then extracted from iOBPdb (https://
www.iobpdb.com (accessed on 17 April 2024)) [26,60], providing key interaction data
between odorant-binding proteins (PBPs and GOBPs) and VOCs. To eliminate redundancy,
duplicate SMILES structures and repeated amino acid sequences were identified and
removed, ensuring the uniqueness of each protein–ligand pair. This resulted in three new
sets of 110 OBPs, 254 VOCs and a 254 × 110 affinity matrix reflecting the binding affinity
(Ki) of each protein–ligand combination (Figure 4).
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4.1.3. Extraction of Descriptors

For the 254 VOCs, using the PaDEL-Descriptor library [70] (through PaDEL-Py, its
Python 3.9 implementation [71]), 1875 descriptors were generated (431 3D features and
1444 2D and 1D features) per compound, including physicochemical, topological, geomet-
rical and other characteristics. For the 110 OBPs generated through Python’s PyPro3 [72]
library, 1547 descriptors were calculated based on the amino acid sequence without signal
peptides, such as amino acid composition, physicochemical properties, hydrophobicity and
other relevant characteristics.

4.1.4. Dataset Creation

The affinity matrix was transformed into a long format, where each row represents
a single VOC-OBP interaction with its binding affinity value (Ki), yielding a dataset of
1459 compound–protein interactions. Two merges were performed to enrich the dataset
with descriptors of VOCs and OBPs with the Merge function of the Python Pandas li-
brary [68,71]. Features with zero were then removed in their entirety, generating a final set
of 1459 interactions and 3048 descriptor features.

4.1.5. Machine Learning Models

• Training and testing data.

To assess the generalizability of the models, the dataset was split into 80% (1167 × 3048)
for training and 20% (292 × 3048) for testing with a seed of 41 to ensure reproducibility.
The training subset was used to fit and optimize the models, while the test set allowed
performance to be assessed on unseen data, ensuring a robust measure of their accuracy.

https://www.iobpdb.com
https://www.iobpdb.com
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• Dataset preprocessing

Considering variation in data scales and ranges, normalization was applied to improve
the performance and stability of the models. In particular, the StandardScaler method of
the Scikit-Learn library [73] was used, which transforms each characteristic according to
the mean and standard deviation of its values, allowing a normalized distribution to be
obtained with a mean of 0 and a standard deviation of 1:

Xscaled =
X − µ

σ
(1)

where the definitions are as follows:

- X is the original value of the feature;
- µ is the mean of the feature in the dataset;
- σ is the standard deviation of the feature.

In addition, the binding affinity (Ki) values were transformed into a logarithmic scale
(pKi), similar to the SimBoost, DeepDTA and Affinity2Vec [54,65–73] methods, by applying
the following equation:

pKi = −log1
(

Ki
1 × 109

)
(2)

- Ki represents the value of the inhibition constant in units of molarity (M).
- The factor 1 × 109 (or 109 nM) is used to convert Ki to nanomolarity (nM) so that the

resulting logarithmic values are on a comparable scale.

This transformation converts the value of Ki into a scale that is easier to interpret.
These values in the dataset range from 6.30 to 9.80, where high values of pKi indicate a
strong binding affinity (i.e., lower Ki) and low values indicate a weak affinity. To obtain the
affinities on their original scale, just apply the inverse function (from pKi to Ki) to convert
the pKi values predicted by the model back to molarity units. The inverse formula to
recover Ki from pKi is

Ki = 109−pKi (3)

4.2. Models’s Implementation

The regression algorithms implemented in this study corresponded to supervised
learning, where the following regression models were applied: Gradient Boosting (GB),
AdaBoost (AB), Random Forest (RF) and Support Vector Regressor (SVR) [73]. XGBRe-
gressor from the XGBoost library [74] was also applied, as was LGBMRegressor from the
LightGBM library [75]. A brief theoretical description of each is given below:

• XGBoost Regressor

This algorithm represents an advanced decision tree-based boosting method designed
to continuously improve its predictions. This model adjusts multiple trees in sequence,
with each tree attempting to correct the errors of its predecessors. XGBRegressor’s ability
to perform fine-tuning, through gradient optimization, allows for excellent accuracy in
complex regression problems. Its flexibility and robustness to overfitting make it a preferred
choice for high-dimensional regression scenarios and heterogeneous data.

• LightGBM Regressor

This is a boosting algorithm that is based on decision trees and distinguished by
its unique focus on growing leaves instead of levels. This approach allows for greater
accuracy in less time, optimizing memory usage and reducing training times. Its ability
to handle large data volumes and high dimensionality makes it especially valuable in
regression problems where a balance between speed and accuracy is sought. In addition,
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its dynamic fitting and sparse data handling capabilities position it as an effective tool in
advanced applications.

• Gradient Boosting Regressor

This is a sequential boosting algorithm that optimizes performance by combining
multiple simple models. Each subsequent model corrects the errors of the previous one
through gradient descent, allowing for a steady improvement in prediction accuracy. This
model is especially effective in regression problems that require a high level of accuracy
and is able to capture complex relationships in the data without extensive pre-processing.

• AdaBoost Regressor

This is an iterative boosting algorithm that consecutively fits simple models, pay-
ing more attention to mispredicted observations at each iteration. This method allows
for continuous model fitting, resulting in improved accuracy without the need for com-
plex configurations. AdaBoost is a reliable choice in regression applications where an
adaptive and fast-fitting model is needed, providing effective solutions to problems of
moderate complexity.

• Random Forest Regressor

This is an ensemble algorithm that builds multiple decision trees and averages their
results to obtain a stable and accurate prediction. This model is highly effective in reducing
overfitting and is especially valuable for handling high-dimensional data and noise. Its
ability to maintain a balance between accuracy and efficiency makes it a reliable and
versatile tool in a wide range of regression applications.

• Support Vector Regressor

This is a support vector machine-based algorithm designed to find the optimal hy-
perplane that minimizes prediction error. This approach allows SVR to efficiently handle
non-linear relationships and produce accurate predictions even in datasets with high vari-
ability. Thanks to its ability to control the sensitivity of the model to extreme data, SVR
is a powerful tool in regression scenarios where accuracy is required under conditions of
complexity and non-linearity.

Hyperparameter Optimization and Cross-Validation

To maximize the accuracy of the models and avoid overfitting, hyperparameter op-
timization was performed with 100 evals for each model along with thorough cross-
validation at 80% of the data. Hyperparameter optimization was implemented using
Hyperopt [76], a Bayesian optimization method that searches for the best set of parameters
for each model by iteratively evaluating different combinations of hyperparameters. The
search spaces for each parameter were defined in terms of appropriate ranges and values
for each specific model, maximizing the accuracy and stability of the predictions.

To evaluate the performance of each set of hyperparameters, Scikit-Learn’s cross-
validate feature was used with cross-validation of 10 partitions (cv = 10). This technique
divides the training data into 5 subsets, where each partition is used once as a test set,
while the remaining partitions are used for model training. The results obtained from
each partition were averaged to obtain a global performance metric, using the RMSE, R2

and MAE [77] as the main metrics. This combination of optimization and cross-validation
provides a robust model and prevents the fit from being influenced by a single test dataset,
which improves the generalizability and accuracy of the final model. The optimal hyperpa-
rameters that were used in this experiment to develop the prediction models are shown in
Table 2.
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Table 2. Hyperparameters explored and optimal values for models implemented.

Model Parameters Hyperparameter Search Optimal Value

XGBoostRegressor

n_estimators [700, 1200] 800
learning_rate [0.009, 0.03] 0.0188610
max_depth [10, 15] 10

min_child_weight [5, 10] 9
gamma [0.00, 0.005] 0.002323

colsample_bytree [0.3, 0.6] 0.392232
subsample [0.6, 0.9] 0.564263
reg_alpha [0.5, 1.0] 0.683823

reg_lambda [1.5, 2.0] 1.711287

LightGBMRegressor

n_estimators [700, 1200] 900
learning_rate [0.009, 0.03] 0.0222877
max_depth [10, 20] 13
num_leaves [20, 150] 148

min_child_weight [5, 10] 7
subsample [0.5, 1.0] 0.661123

colsample_bytree [0.3, 0.8] 0.305414
reg_alpha [0, 2] 0.316713

reg_lambda [0, 3] 1.579887

GradientBoostingRegressor

n_estimators [100, 500] 400
learning_rate [0.009, 0.03] 0.0265516
max_depth [5, 15] 5
Subsample [0.5, 1.0] 0.687177

min_samples_split [2, 10] 10
min_samples_leaf [1, 10] 1

max_features [0.1, 0.5] 0.260379

AdaBoostRegressor n_estimators [100, 500] 100
learning_rate [0.009, 0.03] 0.00996526

RandomForestRegressor

n_estimators [700, 1200] 1000
max_depth [3, 20] 16

min_samples_split [2, 20] 5
min_samples_leaf [1, 20] 1

SupportVectorRegressor
C [1000, 5000] 1000

epsilon [0.009, 0.03] 0.029727
degree [1, 15] 13

4.3. Models’ Performance Evaluation
4.3.1. Root-Mean-Square Error (RMSE)

The Root-Mean-Square Error (RMSE) is a robust metric that measures the accuracy of
prediction models by assessing the average deviation of predictions from actual values. This
value, expressed in the same units as the target variable, facilitates direct and comparative
interpretation of the error. A low RMSE [77] indicates that the model fits the data well, thus
representing an accurate and reliable prediction. This metric is notable for its sensitivity to
large errors, helping to identify areas for improvement in model accuracy.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

- n: total number of observations.
- yi: real value of the observation i.
- ŷi: predicted value for the observation i.
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4.3.2. Coefficient of Determination

The Coefficient of Determination (R2) is a metric that assesses the proportion of
variability in the target variable that the model is able to explain. This indicator, expressed
as a value between 0 and 1, provides a clear understanding of the effectiveness of the model.
A high R2 [77] suggests a satisfactory fit, demonstrating that the model adequately captures
the trends in the data.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (5)

- yi: real value of the observation i.
- ŷi: predicted value for the observation i.
- y: mean of all real values yi.
- n: total number of observations (256).

4.3.3. Mean Absolute Error

The Mean Absolute Error (MAE) measures the accuracy of the model by calculating
the average of the absolute differences between predictions and actual values. This metric
provides a clear and direct view of model performance as it reflects the average error
in absolute terms and is less sensitive to outliers. A low MAE [77] reflects the model’s
ability to consistently make accurate predictions, inspiring confidence in the robustness
and applicability of the model in real-world scenarios.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (6)

- n: total number of observations.
- yi: real value of the observation i.
- ŷi: predicted value for the observation i.

4.3.4. Confidence Interval

The Confidence Interval (CI) assesses the accuracy of the model predictions and
provides a range of uncertainty in the estimates. The Confidence Interval [78,79] was
calculated based on the standard deviation of the residuals. This interval allows us to
estimate the range within which most predictions are expected to lie, given a specific
confidence level.

This approach assumes that the residuals are approximately normally distributed
and therefore allows for the construction of a symmetric confidence interval around each
prediction. By plotting these intervals alongside the predictions, it is possible to visualize
the expected variability in the model and to assess whether its predictions are concen-
trated close to the true values or whether there is high dispersion. Figure 2 compares the
predictions of each model against the actual values, with a confidence interval of 90%.

4.4. SHAP Values

SHAP (Shapley Additive exPlanation) analysis was used to interpret the importance
and impact of key features, specifically aiming to identify which chemical or protein
descriptors have the greatest impact on the binding affinity predicted by the model. In
this study, SHAP values were calculated for the XGBoostRegressor model, considering its
performance and compatibility with the library.
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5. Conclusions
The characterization of binding proteins such as PBPs and GOBPs, and their interaction

with VOCs in lepidopterans, show their relevance in odorant detection as well as their
potential application within an integrated pest management strategy. In this study, the
performed analysis integrated both chemical and protein descriptors along with functional
data Ki, evidencing that approaches based on ML are effective tools for decoding complex
protein–ligand relationships.

Notably, this study represents the first effort to focus exclusively on predicting Ki

binding affinity for odor-binding proteins specifically associated with pheromones and
general odors in Lepidoptera. This novel approach highlights an underexplored area within
protein–drug ligand research, providing a foundation for future investigations into the
unique molecular interactions of these specialized proteins.

Notably, these findings highlight the value of computational methodologies to over-
come some limitations in traditional experimental approaches, such as high dependency
on live insects, related economical costs and challenges associated with the throughput
identification of bioactive chemicals (e.g., semiochemicals). The capacity of prediction that
has been demonstrated could allow the identification of novel bioactive compounds, which
could be used as attractants or repellents for pest control. Finally, this study reinforces the
utility of predictive models to integrate both molecular and functional data, helping to
understand the depth with which insects can detect chemicals from the environment. It is
believed that this approach will form the basis for future research around chemical ecology
and applied biotechnology in the context of insect pest control.

Supplementary Materials: This supplementary material can be accessed through the link https:
//github.com/Glarah453/ML_obps_vocs (accessed on 18 January 2025). All files are accompanied
by detailed documentation and practical examples to facilitate the reproducibility of the results. The
source code, processed datasets and scripts used to reproduce the experiments presented in this study
are available in the public GitHub repository “ML_obps_vocs”.
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