Mostrar el registro sencillo de la publicación

dc.contributor.authorCysneiros, Francisco José A.
dc.contributor.authorLeiva, Víctor
dc.contributor.authorLiu, Shuangzhe
dc.contributor.authorMarchant-Fuentes, Carolina
dc.contributor.authorScalco, Paulo
dc.date.accessioned2019-07-08T15:41:05Z
dc.date.available2019-07-08T15:41:05Z
dc.date.issued2019
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/2274
dc.description.abstractWe propose a methodology for modelling and influence diagnostics in a Cobb–Douglas type setting. This methodology is useful for describing case-studies from economics. We consider stochastic restrictions for the model based on auxiliary information in order to improve its predictive ability. Model errors are assumed to follow the family of symmetric distributions and particularly its normal and Student-t members. We estimate the model parameters with the maximum likelihood method, which allows us to compare the normal case with a flexible framework that provides robust estimation of parameters based on the Student-t case. To conduct diagnostics in the model, we use two approaches for studying how a perturbation may affect on the mixed estimation procedure of its parameters due to the usage of sample data and non-sample auxiliary information. Curvatures and slopes used to detect local influence with both approaches are derived, considering perturbation schemes of case-weight, response and explanatory variables. Numerical evaluation of the proposed methodology is performed by Monte Carlo simulations and by applications with two data sets from economics, all of which show its good performance and its further applications. Particularly, the real data analyses confirm the importance of statistical diagnostics in the data modelling.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceQuality & Quantity, 53(4), 1693–1719es_CL
dc.subjectMixed estimationes_CL
dc.subjectMonte Carlo simulationses_CL
dc.subjectRegression modelses_CL
dc.subjectR softwarees_CL
dc.subjectSymmetric distributionses_CL
dc.titleA Cobb–Douglas type model with stochastic restrictions: Formulation, local influence diagnostics and data analytics in economicses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Básicases_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urisibib2.ucm.cl:2048/login?url=https://link.springer.com/article/10.1007/s11135-018-00834-wes_CL
dc.ucm.doidoi.org/10.1007/s11135-018-00834-wes_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile