Mostrar el registro sencillo de la publicación

dc.contributor.authorGelvez-Almeida, Elkin
dc.contributor.authorBaldera-Moreno, Yvan
dc.contributor.authorHuérfano, Y.
dc.contributor.authorVera, M.
dc.contributor.authorMora, Marco
dc.contributor.authorBarrientos, Ricardo
dc.date.accessioned2023-05-08T19:21:23Z
dc.date.available2023-05-08T19:21:23Z
dc.date.issued2020
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4759
dc.description.abstractThis paper aims to present an updated review of parallel algorithms for solving square and rectangular single and double precision matrix linear systems using multi-core central processing units and graphic processing units. A brief description of the methods for the solution of linear systems based on operations, factorization and iterations was made. The methodology implemented, in this article, is a documentary and it was based on the review of about 17 papers reported in the literature during the last five years (2016-2020). The disclosed findings demonstrate the potential of parallelism to significantly decrease extreme learning machines training times for problems with large amounts of data given the calculation of the Moore Penrose pseudo inverse. The implementation of parallel algorithms in the calculation of the pseudo-inverse will allow to contribute significantly in the applications of diversifying areas, since it can accelerate the training time of the extreme learning machines with optimal results.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceJournal of Physics: Conference Series, 1702, 012017es_CL
dc.titleParallel methods for linear systems solution in extreme learning machines: an overviewes_CL
dc.typeArticlees_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriiopscience.iop.org/article/10.1088/1742-6596/1702/1/012017es_CL
dc.ucm.doidoi.org/10.1088/1742-6596/1702/1/012017es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile