Mostrar el registro sencillo de la publicación

dc.contributor.authorGelvez-Almeida, Elkin
dc.contributor.authorMora, Marco
dc.contributor.authorHuérfano-Maldonado, Y
dc.contributor.authorSalazar-Jurado, Edwin
dc.contributor.authorMartínez-Jeraldo, N
dc.contributor.authorLozada-Yavina, Rafael
dc.contributor.authorBaldera-Moreno, Yvan
dc.contributor.authorTobar Valenzuela, Luis
dc.date.accessioned2023-09-04T12:37:31Z
dc.date.available2023-09-04T12:37:31Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/4943
dc.description.abstractExtreme learning machine is a neural network algorithm widely accepted in the scientific community due to the simplicity of the model and its good results in classification and regression problems; digital image processing, medical diagnosis, and signal recognition are some applications in the field of physics addressed with these neural networks. The algorithm must be executed with an adequate number of neurons in the hidden layer to obtain good results. Identifying the appropriate number of neurons in the hidden layer is an open problem in the extreme learning machine field. The search process has a high computational cost if carried out sequentially, given the complexity of the calculations as the number of neurons increases. In this work, we use the search of the golden section and simulated annealing as heuristic methods to calculate the appropriate number of neurons in the hidden layer of an Extreme Learning Machine; for the experiments, three real databases were used for the classification problem and a synthetic database for the regression problem. The results show that the search for the appropriate number of neurons is accelerated up to 4.5× times with simulated annealing and up to 95.7× times with the golden section search compared to a sequential method in the highest-dimensional database.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceJournal of Physics: Conference Series, 2515, 012003es_CL
dc.titleEstimation of the optimal number of neurons in extreme learning machine using simulated annealing and the golden sectiones_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Básicases_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriiopscience.iop.org/article/10.1088/1742-6596/2515/1/012003es_CL
dc.ucm.doidoi.org/10.1088/1742-6596/2515/1/012003es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile