Mostrar el registro sencillo de la publicación

dc.contributor.authorCabrera-Ariza, Antonio
dc.contributor.authorPeralta-Aguilera, Miguel
dc.contributor.authorHenríquez-Hernández, Paula V.
dc.contributor.authorSantelices-Moya, Rómulo
dc.date.accessioned2024-01-11T14:44:34Z
dc.date.available2024-01-11T14:44:34Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5169
dc.description.abstractThis study explores the use of unmanned aerial vehicles (UAVs) and machine learning algorithms for the identification of Nothofagus alessandrii (ruil) species in the Mediterranean forests of Chile. The endangered nature of this species, coupled with habitat loss and environmental stressors, necessitates efficient monitoring and conservation efforts. UAVs equipped with high-resolution sensors capture orthophotos, enabling the development of classification models using supervised machine learning techniques. Three classification algorithms—Random Forest (RF), Support Vector Machine (SVM), and Maximum Likelihood (ML)—are evaluated, both at the Pixel- and Object-Based levels, across three study areas. The results reveal that RF consistently demonstrates strong classification performance, followed by SVM and ML. The choice of algorithm and training approach significantly impacts the outcomes, highlighting the importance of tailored selection based on project requirements. These findings contribute to enhancing species identification accuracy in remote sensing applications, supporting biodiversity conservation and ecological research efforts.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceDrones, 7(11), 668es_CL
dc.subjectSpecies identificationes_CL
dc.subjectRemote sensinges_CL
dc.subjectClassification algorithmses_CL
dc.titleUsing uavs and machine learning for Nothofagus alessandrii species identification in mediterranean forestses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Agrarias y Forestaleses_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/2504-446X/7/11/668es_CL
dc.ucm.doidoi.org/10.3390/drones7110668es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile