Mostrar el registro sencillo de la publicación

dc.contributor.authorTorres González, Ítalo
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorAhumada-García, Roberto
dc.contributor.authorRivelli Malcó, Juan Pablo
dc.contributor.authorAzurdia-Meza, Cesar A.
dc.contributor.authorPalacios Játiva, Pablo
dc.date.accessioned2024-01-11T15:07:35Z
dc.date.available2024-01-11T15:07:35Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5174
dc.description.abstractChilean wine is one of the most consumed in the global market due to its excellent quality and wide variety of grape crops throughout the country, with Chile being the largest exporter of wine in the southern hemisphere. The characterization of wine quality is of vital importance for this industry, as the valuation of this product in the market depends on it. This study proposes the binary classification of wine quality (high and low quality) for both white and red varieties. To do this, we used Extreme Learning Machine (ELM) due to its training speed and acceptable performance. The evaluated ELMs are Basic ELM, Regularized ELM, and Unbalanced ELM. The results of these algorithms were measured in terms of Accuracy, Geometric Mean, and complexity expressed in training time. When comparing the performance results of these algorithms, it can be stated that the different types of ELMs have similar performance, with the Unbalanced ELM having the best performance, with almost 80 % accuracy for white varieties and 87 % accuracy for red varieties along with learning speed in the order of seconds. This research demonstrates the viability and potentiality of using ELMs for the classification of wine quality for both white and red varieties.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceProceedings - International Conference of the Chilean Computer Science Society, SCCC,2023, 1-6es_CL
dc.subjectTraininges_CL
dc.subjectIndustrieses_CL
dc.subjectComputer sciencees_CL
dc.subjectExtreme learning machineses_CL
dc.subjectPipelineses_CL
dc.subjectGlobalizationes_CL
dc.subjectCropses_CL
dc.titleWine quality classification using physicochemical properties along with extreme learning machineses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10315740/keywords#keywordses_CL
dc.ucm.doidoi.org/10.1109/SCCC59417.2023.10315749es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile