Mostrar el registro sencillo de la publicación

dc.contributor.authorAhumada-García, Roberto
dc.contributor.authorMorán Faúndez, Esteban
dc.contributor.authorZabala-Blanco, David
dc.contributor.authorLópez-Cortés, Xaviera A.
dc.contributor.authorRivelli Malco, Juan Pablo
dc.contributor.authorSoto, Ismael
dc.date.accessioned2024-01-16T17:40:04Z
dc.date.available2024-01-16T17:40:04Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5180
dc.description.abstractThe protection of planet Earth, its inhabitants, and all living beings requires the identification of potentially dangerous objects, the simulation of impacts with Earth, and the mitigation of such threats. This research proposes the use of ELMs to distinguish between potentially dangerous objects and those that are not. The ELMs applied in this study include the standard ELM, the Regularized ELM, and the Weighted ELM (in versions W 1 and W 2 ). For the training and validation of the hazard object classification models, the “Nearest Earth Objects” database from NASA, available on Kaggle, was used. From this database, five features of the objects and a binary output indicating the danger or not towards Earth were used. The models were evaluated based on accuracy, geometric mean, and training time. According to the results, the Weighted ELM in its W 1 version offers the best performance, as it is capable of more effectively classifying dangerous and non-dangerous objects for Earth, with an accuracy of 0.8, a geometric mean of 0.7, and a training time of 1.8 seconds. Based on the results obtained, the viability of classifying whether objects are potentially dangerous for Earth is confirmed. However, to increase the performance of the models, it is recommended to continue exploring other types of ELMs.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceProceedings - International Conference of the Chilean Computer Science Society, SCCC, 2023, 1-6es_CL
dc.subjectEarthes_CL
dc.subjectTraininges_CL
dc.subjectComputer sciencees_CL
dc.subjectDatabaseses_CL
dc.subjectExtreme learning machineses_CL
dc.subjectComputational modelinges_CL
dc.subjectNASAes_CL
dc.titleExtreme learning machine (ELM) for detection of hazardous near Earth objectses_CL
dc.typeArticlees_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10315739/authors#authorses_CL
dc.ucm.doidoi.org/10.1109/SCCC59417.2023.10315739es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile