Mostrar el registro sencillo de la publicación

dc.contributor.authorLillo, Felipe
dc.contributor.authorGarcía, Leidy
dc.contributor.authorSeverino-González, Pedro
dc.date.accessioned2024-04-01T18:44:19Z
dc.date.available2024-04-01T18:44:19Z
dc.date.issued2024
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5272
dc.description.abstractLearning strategies at primary school level are important to ensure student progress. In this regards, the identification of those factors influencing students grades certainly help teachers in predicting outcomes as well as in improving teaching strategies. This study empirically investigates connections between socio-demographic, school–related and academic features of primary students. Special attention is given to spatial features and how they influence performance. In particular the Euclidean distance from city center. The research method is based on machine learning techniques which are developed from a dataset consisting of 12159 primary school students living in the city of Talca, Chile. Four machine learning models are tested: a Neural Network (NN), Random Forest (RF) a Support Vector Machine (SVM) and a Gradient Boosted Tree model (GBT). Results show similar error levels between models and confirms student age, school capacity and school distance as important determinants of score predictions.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceInterciencia, 49(1), 60-67es_CL
dc.subjectMachine learninges_CL
dc.subjectPrimary Educationes_CL
dc.subjectScore Predictiones_CL
dc.subjectSpatial Featureses_CL
dc.titleMachine learning model for predicting primary school scores based on spatial, socio demographic and school–related informationes_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Sociales y Económicases_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.uriinterciencia.net/wp-content/uploads/2024/02/07_7104_Com_Severino_v49n1_8.pdfes_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile