Mostrar el registro sencillo de la publicación

dc.contributor.authorHerazo-Alvarez, Jair
dc.contributor.authorBarria-Valdebenito, Pedro
dc.contributor.authorMora, Marco
dc.contributor.authorCuadros-Orellana, Sara
dc.date.accessioned2024-05-07T16:00:22Z
dc.date.available2024-05-07T16:00:22Z
dc.date.issued2023
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5376
dc.description.abstractMetagenomics studies the genetic information of microbial communities in different contexts. As metagenomic DNA is often fragmented and then sequenced into small reads, these reads can be assembled into longer sequences called contigs. An important step in the metagenomic analysis pipeline is Binning, which corresponds to the classification (supervised) or clustering (unsupervised) of reads or contigs. In the case of unsupervised Binning, several Machine Learning algorithms that use DNA sequence descriptors, such as k-mers Frequency and GC Content to perform clustering, have been employed. This paper proposes the use of Unsupervised Extreme Learning Machines (US-ELM) for Metagenomic Binning. The experiments use three datasets with different numbers of species present, and compare the results obtained by US-ELM with respect to the k-means and Maximization Expectation (ME) algorithms. The performance comparison employed metrics widely used in the problem, such as Accuracy, Rand�s index, and Clustering Computation Time. From the experiments, we can see that USELM windenly outperforms the other two clustering methods in accuracy. In terms of computational cost, US-ELM is comparable to k-means, and both algorithms are much faster than EM. Numerical results show the interesting potential of the US-ELM algorithm in the metagenomic binning problem.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceIEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valdivia, Chile, 1-6es_CL
dc.subjectMeasurementes_CL
dc.subjectMachine learning algorithmses_CL
dc.subjectExtreme learning machineses_CL
dc.subjectPipelineses_CL
dc.subjectClustering algorithmses_CL
dc.subjectDNAes_CL
dc.subjectInformation and communication technologyes_CL
dc.titleMetagenomic binning based on unsupervised extreme learning machinees_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Básicases_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.uriieeexplore.ieee.org/document/10418667/authors#authorses_CL
dc.ucm.doidoi.org/10.1109/CHILECON60335.2023.10418667es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile