Mostrar el registro sencillo de la publicación

dc.contributor.authorFuentes, Sigfredo
dc.contributor.authorOrtega-Farías, Samuel
dc.contributor.authorCarrasco-Benavides, Marcos
dc.contributor.authorTongson, E. J.
dc.contributor.authorGonzalez Viejo, Claudia
dc.date.accessioned2024-05-13T18:25:43Z
dc.date.available2024-05-13T18:25:43Z
dc.date.issued2024
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5389
dc.description.abstractActual evapotranspiration (ETa) can be commonly estimated using numerical models based on i) weather and plant-based parameters, ii) from remotely sensed data and energy balance algorithms, and lately, iii) through the development and implementation of machine learning (ML) modeling techniques. In this work, supervised ML models were developed from a vineyard located in Talca, Chile, (i) to estimate actual evapotranspiration (ETa) (Model 1; M1) using the micrometeorological approach [Eddy Covariance; EC; sensible (H), latent (LE), soil heat fluxes (G) and net radiation (Rn)] and data from an automatic meteorological station (AMS) in reference conditions as ground-truth (inputs); (ii) to estimate energy balance components (Model 2; M2) from AMS data (inputs) and EC energy balance data as targets; (iii) to estimate ETa from the EC’s measured ETa data as target and thermal time data (degree hours; DH) calculated from air temperature with a base of 5 °C increments from 5 – 45 °C as inputs (Model 3; M3) and iv) to estimate energy balance components (targets from EC) from the same inputs of Model 3 (Model 4; M4). Results showed that the developed ML models had high accuracy and performance with no signs of over or under-fitting with a high correlation (R) and slope (b) close to unity (M1; R=0.94; b=0.89; M2; R=0.97; b=0.93; M3; R=0.97; b=0.89–0.95; M4; R=0.98; b=0.97). Furthermore, models were directly deployed over another vineyard located 22 km West of the modeled vineyard at 60 m lower over the sea level with significant performances and R values (R = 0.64–0.87; b = 0.66–1.00 for M1 to M4, respectively). These models could be used for precision irrigation to increase water use efficiency and better control canopy vigor, balance fruit and vegetative components, and ultimately improve berry and wine quality traits.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceAgricultural Water Management, 297, 108834es_CL
dc.subjectArtificial neural networkses_CL
dc.subjectEddy covariancees_CL
dc.subjectThermal timees_CL
dc.subjectPlant water demandes_CL
dc.subjectPlant water statuses_CL
dc.subjectEnergy balancees_CL
dc.titleActual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modelinges_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Agrarias y Forestaleses_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urisciencedirect.ucm.elogim.com/science/article/pii/S0378377424001690?via%3Dihubes_CL
dc.ucm.doidoi.org/10.1016/j.agwat.2024.108834es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile