Mostrar el registro sencillo de la publicación

dc.contributor.authorGelvez-Almeida, Elkin
dc.contributor.authorMora, Marco
dc.contributor.authorBarrientos, Ricardo J.
dc.contributor.authorHernández-García, Ruber
dc.contributor.authorVilches-Ponce, Karina
dc.contributor.authorVera, Miguel
dc.date.accessioned2024-07-30T19:08:02Z
dc.date.available2024-07-30T19:08:02Z
dc.date.issued2024
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5514
dc.description.abstractThe randomization-based feedforward neural network has raised great interest in the scientific community due to its simplicity, training speed, and accuracy comparable to traditional learning algorithms. The basic algorithm consists of randomly determining the weights and biases of the hidden layer and analytically calculating the weights of the output layer by solving a linear overdetermined system using the Moore–Penrose generalized inverse. When processing large volumes of data, randomization-based feedforward neural network models consume large amounts of memory and drastically increase training time. To efficiently solve the above problems, parallel and distributed models have recently been proposed. Previous reviews of randomization-based feedforward neural network models have mainly focused on categorizing and describing the evolution of the algorithms presented in the literature. The main contribution of this paper is to approach the topic from the perspective of the handling of large volumes of data. In this sense, we present a current and extensive review of the parallel and distributed models of randomized feedforward neural networks, focusing on extreme learning machine. In particular, we review the mathematical foundations (Moore–Penrose generalized inverse and solution of linear systems using parallel and distributed methods) and hardware and software technologies considered in current implementations.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceMathematical and Computational Applications, 29(3), 40es_CL
dc.subjectRandomization-based feedforward neural networkes_CL
dc.subjectExtreme learning machinees_CL
dc.subjectMoore–Penrose generalized inverse matrixes_CL
dc.subjectParallel and distributed computinges_CL
dc.titleA review on large-scale data processing with parallel and distributed randomized extreme learning machine neural networkses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/2297-8747/29/3/40es_CL
dc.ucm.doidoi.org/10.3390/mca29030040es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile