Simultaneous Hopf and Bogdanov–takens bifurcations on a Leslie–Gower type model with generalist predator and group defence
Autor
Puchuri, Liliana
Bueno, Orestes
González-Olivares, Eduardo
Rojas-Palma, Alejandro
Fecha
2024Resumen
In this work, we analyze a two-dimensional continuous-time differential equations system derived from a Leslie–Gower predator–prey model with a generalist predator and prey group defence. For our model, we fully characterize the existence and quantity of equilibrium points in terms of the parameters, and we use this to provide necessary and sufficient conditions for the existence and the explicit form of two kinds of equilibrium points: both a degenerate one with associated nilpotent Jacobian matrix, and a weak focus. These conditions allows us to determine whether the system undergoes Bogdanov–Takens and Hopf bifurcations. Consequently, we establish the existence of a simultaneous Bogdanov–Taken and Hopf bifurcation. With this double bifurcation, we guarantee the existence of a new Hopf bifurcation curve and two limit cycles on the system: an infinitesimal and another non-infinitesimal.
Fuente
Qualitative Theory of Dynamical Systems, 23(Suppl 1), 255Link de Acceso
Click aquí para ver el documentoIdentificador DOI
doi.org/10.1007/s12346-024-01118-5Colecciones
La publicación tiene asociados los siguientes ficheros de licencia: