Mostrar el registro sencillo de la publicación

dc.contributor.authorCabrera, Leoncio
dc.contributor.authorArdid, Alberto
dc.contributor.authorMelchor, Ivan
dc.contributor.authorRuiz, Sergio
dc.contributor.authorSymmes‐Lopetegui, Blanca
dc.contributor.authorBáez, Juan Carlos
dc.contributor.authorDelgado, Francisco
dc.contributor.authorMartinez‐Yáñez, Pablo
dc.contributor.authorDempsey, David
dc.contributor.authorCronin, Shane
dc.date.accessioned2024-11-18T14:49:59Z
dc.date.available2024-11-18T14:49:59Z
dc.date.issued2024
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5758
dc.description.abstractAnticipating volcanic eruptions remains a challenge despite significant scientific advancements, leading to substantial human and economic losses. Traditional approaches, like volcano alert levels, provide current volcanic states but do not always include eruption forecasts. Machine learning (ML) emerges as a promising tool for eruption forecasting, offering data‐driven insights. We propose an ML pipeline using volcano‐seismic data, integrating precursor extraction, classification modeling, and decision‐making for eruption alerts. Testing on six Copahue volcano eruptions demonstrates our model’s ability to identify precursors and issue advanced warnings pseudoprospectively. Our model provides alerts 5–75 hr before eruptions and achieving a high true negative rate, indicating robust discriminatory power. Integrating short‐ and long‐term data reveals seismic sensitivity, emphasizing the need for comprehensive volcanic monitoring. Our approach showcases ML’s potential to enhance eruption forecasting and risk mitigation. In addition, we analyze long‐term geodetic data (Interferometric Synthetic Aperture Radar and Global Navigation Satellite System) to assess Copahue volcano deformation trends, in which we notice an absence of noteworthy deformation in the signals associated with the six small eruptions, aligning with their small magnitude.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceSeismological Research Letters, 95(5), 2595-2610es_CL
dc.titleEruption forecasting model for Copahue volcano (Southern Andes) using seismic data and machine learning: a joint interpretation with geodetic data (GNSS and InSAR)es_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Básicases_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.uripubs.geoscienceworld.org/ssa/srl/article-abstract/95/5/2595/644475/Eruption-Forecasting-Model-for-Copahue-Volcano?redirectedFrom=fulltextes_CL
dc.ucm.doidoi.org/10.1785/0220240022es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile