Mostrar el registro sencillo de la publicación

dc.contributor.authorTorres, Felipe A.
dc.contributor.authorOtero, Mónica
dc.contributor.authorLea-Carnall, Caroline A.
dc.contributor.authorCabral, Joana
dc.contributor.authorWeinstein, Alejandro
dc.contributor.authorEl-Deredy, Wael
dc.date.accessioned2025-04-10T14:48:06Z
dc.date.available2025-04-10T14:48:06Z
dc.date.issued2024
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/5957
dc.description.abstractMulti-state metastability in neuroimaging signals reflects the brain’s flexibility to transition between network configurations in response to changing environments or tasks. We modeled these dynamics with a Kuramoto network of 90 nodes oscillating at an intrinsic frequency of 40 Hz, interconnected using human brain structural connectivity strengths and delays. We simulated this model for 30 min to generate multi-state metastability. We identified global coupling and delay parameters that maximize spectral entropy, a proxy for multi-state metastability. At this operational point, multiple frequency-specific coherent sub-networks spontaneously emerge across oscillatory modes, persisting for periods between 140 and 4300 ms, reflecting flexible and sustained dynamic states. The topography of these sub-networks aligns with empirical resting-state neuroimaging data. Additionally, periodic components of the EEG spectra from young healthy participants correlate with maximal multi-state metastability, while dynamics away from this point correlate with sleep and anesthesia spectra. Our findings suggest that multi-state metastable functional dynamics observed in empirical data emerge from specific interactions of structural topography and connection delays, providing a platform to study mechanisms underlying flexible dynamics of cognition.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceScientific Reports, 14, 30726es_CL
dc.subjectBiological physicses_CL
dc.subjectComplex networkses_CL
dc.subjectComputational neurosciencees_CL
dc.titleEmergence of multiple spontaneous coherent subnetworks from a single configuration of human connectome coupled oscillators modeles_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urinature.ucm.elogim.com/articles/s41598-024-80510-2es_CL
dc.ucm.doidoi.org/10.1038/s41598-024-80510-2es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile