Mostrar el registro sencillo de la publicación
Multi-label classification to predict antibiotic resistance from raw clinical MALDI-TOF mass spectrometry data
dc.contributor.author | Astudillo, César A. | |
dc.contributor.author | López-Cortés, Xaviera A. | |
dc.contributor.author | Ocque, Elias | |
dc.contributor.author | Manríquez-Troncoso, José M. | |
dc.date.accessioned | 2025-04-10T14:48:41Z | |
dc.date.available | 2025-04-10T14:48:41Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://repositorio.ucm.cl/handle/ucm/5958 | |
dc.description.abstract | Antimicrobial resistance (AMR) poses a significant global health challenge, necessitating advanced predictive models to support clinical decision-making. In this study, we explore multi-label classification as a novel approach to predict antibiotic resistance across four clinically relevant bacteria: E. coli, S. aureus, K. pneumoniae, and P. aeruginosa. Using multiple datasets from the DRIAMS repository, we evaluated the performance of four algorithms – Multi-Layer Perceptron, Support Vector Classifier, Random Forest, and Extreme Gradient Boosting – under both single-label and multi-label frameworks. Our results demonstrate that the multi-label approach delivers competitive performance compared to traditional single-label models, with no statistically significant differences in most cases. The multi-label framework naturally captures the complex, interconnected nature of AMR data, reflecting real-world scenarios more accurately. We further validated the models on external datasets (DRIAMS B and C), confirming their generalizability and robustness. Additionally, we investigated the impact of oversampling techniques and provided a reproducible methodology for handling MALDI-TOF data, ensuring scalability for future studies. These findings underscore the potential of multi-label classification to enhance predictive accuracy in AMR research, offering valuable insights for developing diagnostic tools and guiding clinical interventions. | es_CL |
dc.language.iso | en | es_CL |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Chile | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | * |
dc.source | Scientific Reports, 14, 31283 | es_CL |
dc.subject | Analytical biochemistry | es_CL |
dc.subject | Bioinformatics | es_CL |
dc.subject | Biological techniques | es_CL |
dc.subject | Biomarkers | es_CL |
dc.subject | Computational biology and bioinformatics | es_CL |
dc.subject | Data acquisition | es_CL |
dc.subject | Data integration | es_CL |
dc.subject | Data mining | es_CL |
dc.subject | Diagnostic markers | es_CL |
dc.subject | Machine learning | es_CL |
dc.subject | Mass spectrometry | es_CL |
dc.subject | Predictive markers | es_CL |
dc.subject | Proteomic analysis | es_CL |
dc.title | Multi-label classification to predict antibiotic resistance from raw clinical MALDI-TOF mass spectrometry data | es_CL |
dc.type | Article | es_CL |
dc.ucm.facultad | Facultad de Ciencias de la Ingeniería | es_CL |
dc.ucm.indexacion | Scopus | es_CL |
dc.ucm.indexacion | Isi | es_CL |
dc.ucm.uri | nature.ucm.elogim.com/articles/s41598-024-82697-w | es_CL |
dc.ucm.doi | doi.org/10.1038/s41598-024-82697-w | es_CL |
Ficheros en la publicación
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a esta publicación. |