Mostrar el registro sencillo de la publicación

dc.contributor.authorLópez-Cortés, Xaviera A.
dc.contributor.authorLara, Gabriel
dc.contributor.authorFernández, Nicolás
dc.contributor.authorManríquez-Troncoso, José M.
dc.contributor.authorVenthur, Herbert
dc.date.accessioned2025-06-05T15:25:45Z
dc.date.available2025-06-05T15:25:45Z
dc.date.issued2025
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/6095
dc.description.abstractDuring their lives, insects must cope with a plethora of chemicals, of which a few will have an impact at the behavioral level. To detect these chemicals, insects use several protein families located in their main olfactory organs, the antennae. Inside the antennae, odorant-binding proteins (OBPs), as the most studied protein family, bind volatile chemicals to transport them. Pheromone-binding proteins (PBPs) and general-odorant-binding proteins (GOPBs) are two subclasses of OBPs and have evolved in moths with a putative olfactory role. Predictions for OBP–chemical interactions have remained limited, and functional data collected over the years unused. In this study, chemical, protein and functional data were curated, and related datasets were created with descriptors. Regression algorithms were implemented and their performance evaluated. Our results indicate that XGBoostRegressor exhibits the best performance (R2 of 0.76, RMSE of 0.28 and MAE of 0.20), followed by GradientBoostingRegressor and LightGBMRegressor. To the best of our knowledge, this is the first study showing a correlation among chemical, protein and functional data, particularly in the context of the PBP/GOBP family of proteins in moths.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceInternational Journal of Molecular Sciences, 26(5), 2302es_CL
dc.subjectChemical ecologyes_CL
dc.subjectLepidopteraes_CL
dc.subjectOdorant-binding proteinses_CL
dc.subjectArtificial intelligencees_CL
dc.subjectLigand bindinges_CL
dc.subjectRegression algorithmes_CL
dc.titleInsight into the relationships between chemical, protein and functional variables in the PBP/GOBP family in moths based on machine learninges_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/1422-0067/26/5/2302es_CL
dc.ucm.doidoi.org/10.3390/ijms26052302es_CL


Ficheros en la publicación

Vista Previa No Disponible
Vista Previa No Disponible

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile