Mostrar el registro sencillo de la publicación

dc.contributor.authorGajardo, John
dc.contributor.authorYáñez, Marco
dc.contributor.authorPadilla, Robert
dc.contributor.authorEspinoza, Sergio
dc.contributor.authorCarrasco-Benavides, Marcos
dc.date.accessioned2025-06-12T14:13:56Z
dc.date.available2025-06-12T14:13:56Z
dc.date.issued2025
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/6121
dc.description.abstractWildfires pose severe threats to terrestrial ecosystems by causing loss of biodiversity, altering landscapes, compromising ecosystem services, and endangering human lives and infrastructure. Chile, with its diverse geography and climate, faces escalating wildfire frequency and intensity due to climate change. This study employs a spatial machine learning approach using a Random Forest algorithm to predict wildfire risk in Central and Southern Chile under current and future climatic scenarios. The model was trained on a time series dataset incorporating climatic, land use, and physiographic variables, with burned-area scars as the response variable. By applying this model to three projected climate scenarios, this study forecasts the spatial distribution of wildfire probabilities for multiple future periods. The model’s performance was high, achieving an Area Under the Curve (AUC) of 0.91 for testing and 0.87 for validation. The accuracy, True Positive Rate (TPR), and True Negative Rate (TNR) values were 0.80, 0.87, and 0.73, respectively. Currently, the prediction of wildfire risk in Mediterranean-type climate areas and the central Araucanía are most at risk, particularly in agricultural zones and rural–urban interfaces. However, future projections indicate a southward expansion of wildfire risk, with an overall increase in probabilities as climate scenarios become more pessimistic. These findings offer a framework for policymakers, facilitating evidence-based strategies for adaptive land management and effective mitigation of wildfire risk.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceFire, 8(3), 113es_CL
dc.subjectWildfireses_CL
dc.subjectSpatial modelinges_CL
dc.subjectRandom Forestes_CL
dc.subjectClimate change scenarioses_CL
dc.subjectFire risk predictiones_CL
dc.titleModeling the spatial distribution of wildfire risk in Chile under current and future climate scenarioses_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias Agrarias y Forestaleses_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urimdpi.com/2571-6255/8/3/113es_CL
dc.ucm.doidoi.org/10.3390/fire8030113es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile