Mostrar el registro sencillo de la publicación

dc.contributor.authorHerazo-Álvarez, Jair
dc.contributor.authorMora, Marco
dc.contributor.authorCuadros-Orellana, Sara
dc.contributor.authorVilches-Ponce, Karina
dc.contributor.authorHernández-García, Ruber
dc.date.accessioned2025-06-12T14:14:23Z
dc.date.available2025-06-12T14:14:23Z
dc.date.issued2025
dc.identifier.urihttp://repositorio.ucm.cl/handle/ucm/6122
dc.description.abstractOne of the main goals of metagenomic studies is to describe the taxonomic diversity of microbial communities. A crucial step in metagenomic analysis is metagenomic binning, which involves the (supervised) classification or (unsupervised) clustering of metagenomic sequences. Various machine learning models have been applied to address this task. In this review, the contributions of artificial neural networks (ANN) in the context of metagenomic binning are detailed, addressing both supervised, unsupervised, and semi-supervised approaches. 34 ANN-based binning tools are systematically compared, detailing their architectures, input features, datasets, advantages, disadvantages, and other relevant aspects. The findings reveal that deep learning approaches, such as convolutional neural networks and autoencoders, achieve higher accuracy and scalability than traditional methods. Gaps in benchmarking practices are highlighted, and future directions are proposed, including standardized datasets and optimization of architectures, for third-generation sequencing. This review provides support to researchers in identifying trends and selecting suitable tools for the metagenomic binning problem.es_CL
dc.language.isoenes_CL
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
dc.sourceBriefings in Bioinformatics, 26(2), bbaf065es_CL
dc.subjectMetagenomicses_CL
dc.subjectBinninges_CL
dc.subjectNeural networkses_CL
dc.subjectDeep learninges_CL
dc.subjectClassificationes_CL
dc.subjectClusteringes_CL
dc.titleA review of neural networks for metagenomic binninges_CL
dc.typeArticlees_CL
dc.ucm.facultadFacultad de Ciencias de la Ingenieríaes_CL
dc.ucm.indexacionScopuses_CL
dc.ucm.indexacionIsies_CL
dc.ucm.urioxfordjournals.ucm.elogim.com/bib/article/26/2/bbaf065/8093116es_CL
dc.ucm.doidoi.org/10.1093/bib/bbaf065es_CL


Ficheros en la publicación

FicherosTamañoFormatoVer

No hay ficheros asociados a esta publicación.

Esta publicación aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo de la publicación

Atribución-NoComercial-SinDerivadas 3.0 Chile
Excepto si se señala otra cosa, la licencia de la publicación se describe como Atribución-NoComercial-SinDerivadas 3.0 Chile